IMPLEMENTATION OF EUROCODES HANDBOOK 2

РУКОВОДСТВО 2 ПО ИСПОЛЬЗОВАНИЮ ЕВРОКОДОВ БАЗОВЫЕ ПРИНЦИПЫ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ

Выборочный русский перевод

Русский перевод – 75% Английский текст – 25%

от 20.03.2015

СОДЕРЖАНИЕ

ГЛАВА І. ОСНОВНЫЕ ПОНЯТИЯ, СВЯЗАННЫЕ С КОНСТРУКТИВНОЙ НАДЕЖНОСТЬЮ ЗДАНИЙ	4
1. Введение	4
2. Неопределенности	5
3. Надежность	6
4. Задачи проектирования	8
5. Практические методы расчета	9
6. Расчет с учетом опытных данных	10
7. Заключение	11
Список литературы	.12
Приложения	.12
ГЛАВА II. БАЗОВЫЕ МЕТОДЫ ОЦЕНКИ НАДЕЖНОСТИ КОНСТРУКЦИЙ І	14
1. Введение	14
2. Основные случаи надежности конструкций	14
3. Точное решение для двух случайных переменных	21
4. Заключение	23
	23
Приложения	23
	23
	24
	24
	27
	23
4. Изменение вероятности разрушения со временем	2/
5. Частный коэффициент своиства материала	20
6. Частные коэффициенты сооственной нагрузки	20
7. Климатические воздеиствия и временные нагрузки	29
8. Примеры	30
9. Заключение	ב י
Список литературы	10.
Приложения	.31
ТЛАВА IV. ПРОЕКТИРОВАНИЕ СОВМЕСТНО С ПРОВЕДЕНИЕМ ИСПЫТАНИИ	32
1. Введение	32
2. Статистическое определение отдельного свойства	35
3. Статистическое определение моделей несущей способности	40
Список литературы	.45
Приложение А. Получение уравнения (50)	45
Приложения	.46
ГЛАВА V. ОЦЕНКА СУЩЕСТВУЮЩИХ КОНСТРУКЦИИ	47
1. Введение	47
2. Общая схема оценки	47
3. Обследование	49
4. Основные переменные	49
5. Анализ результатов проверки	50
6. Оценка конструктивной надежности	52
7. Проверка	53
8. Оценка поврежденной конструкции	53
9. Заключение и окончательное решение	54
10. Заключение	54
Список литературы	.55
Приложение А. Общая схема оценки существующих конструкций	56
Приложение В. Перерасчет вероятностей	57
Приложение С. Байесовский метод оценки квантилей	58
Приложения	.60

ГЛАВА VI. ПРИНЦИПЫ ОЦЕНКИ РИСКА	61
1. Введение	61
2. Выявление опасных факторов	62
3. Определение и моделирование соответствующих сценариев	63
4. Оценка вероятностей	64
5. Оценка последствий	64
6. Оценка риска	65
7. Логические деревья	65
8. Байесовская сеть	68
9. Принятие решений	69
10. Подразумеваемая стоимость предотвращения разрушения	70
11. Заключение	70
Список литературы	71
Условные обозначения	71
ПРИЛОЖЕНИЕ А. ОСНОВНЫЕ СТАТИСТИЧЕСКИЕ ПОНЯТИЯ И МЕТОДЫ	73
1. Введение	73
2. Населенность и образцы	76
3. Выбранные модели случайных переменных	79
4. Оценка квантилей	85
Список литературы	88
Приложение 1. Вероятностные модели основных переменных	90
Приложение 2. Статистические параметры функций случайных переменных	93
Приложение 3. Квантиль случайной переменной	98
Приложения	
•	
приложение в. элементарные методы оценки конструктивной надежности	II 105
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение	II 105 105
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение 2. Расчетная точка	[I 105 105 105
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение 2. Расчетная точка 3. Частные коэффициенты	II 105 105 105 108
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности	II 105 105 105 108 112
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой	II 105 105 105 108 112 115
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции	II 105 105 105 108 112 115 118
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 	II105 105 108 112 115 118 118
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение Расчетная точка Расчетная точка Частные коэффициенты Частные коэффициенты Общий случай оценки уровня надежности Пример с армированной бетонной плитой Общий случай оценки вероятности разрушения конструкции Надежность системы Заключение 	II105 105 105 108 112 115 118 122 124
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы 	II105 105 105 108 112 115 118 122 124 124
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения 	II105 105 108 112 115 118 122 124 124 124 124
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение Расчетная точка Расчетная точка Частные коэффициенты Частные коэффициенты Общий случай оценки уровня надежности Пример с армированной бетонной плитой Общий случай оценки вероятности разрушения конструкции Надежность системы Заключение Список литературы Приложения. 	II105 105 105 108 112 115 118 122 124 124 124 124
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение Расчетная точка Расчетная точка Частные коэффициенты Частные коэффициенты Общий случай оценки уровня надежности Пример с армированной бетонной плитой Общий случай оценки вероятности разрушения конструкции Падежность системы Заключение Список литературы Приложения. 	II105 105 105 108 112 115 118 122 124 124 124 124 124 125
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1. Введение Расчетная точка Частные коэффициенты Общий случай оценки уровня надежности Пример с армированной бетонной плитой Общий случай оценки вероятности разрушения конструкции Надежность системы Заключение Список литературы Приложения 	II105 105 105 108 112 115 118 122 124
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ И 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения. ПРИЛОЖЕНИЕ С. ПРОЦЕДУРА КАЛИБРОВКИ 1. Введение. 2. Основные сочетания нагрузки. 3. Общий элемент конструкции	II105 105 108 112 115 118 122 124 124 124 124 124 124 124 124 124 124 124 125 130 130
 ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ И 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения. ПРИЛОЖЕНИЕ С. ПРОЦЕДУРА КАЛИБРОВКИ 1. Введение. 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности. 	II105 105 105 108 112 115 118 122 124 124 124 124 124 124 124 124 124 125 130 136 136
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ И 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения 1. Введение. 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности.	II105 105 105 108 112 115 118 122 124 124 124 124 124 124 124 124 124 124 124 125 130
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ И 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения. 1. Введение 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности 5. Результаты для общего сечения. 6. Заключение	II105 105 105 108 112 115 118 122 124 124 124 124 124 124 124 124 124 125 130
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ З 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы ПРИЛОЖЕНИЕ С. ПРОЦЕДУРА КАЛИБРОВКИ 1. Введение. 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности. 5. Результаты для общего сечения. 6. Заключение. Список литературы	II
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ Л 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения 1. Введение 2. Основные сочетания нагрузки 3. Общий элемент конструкции 4. Принципы анализа надежности 5. Результаты для общего сечения. 6. Заключение Список литературы Принципы анализа надежности 5. Результаты для общего сечения. 6. Заключение Список литературы Приложение Список литературы Приложение А. Прямое сопоставление воздействий нагрузки.	II105 105 105 108 112 115 118 122 124 124 124 124 124 124 130 136 136 131 150 151 152 158
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ И 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения ПРИЛОЖЕНИЕ С. ПРОЦЕДУРА КАЛИБРОВКИ 1. Введение. 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности. 5. Результаты для общего сечения. 6. Заключение. Список литературы Приложение. Список литературы Васение 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности. 5. Результаты для общего сечения. 6. Заключение. Список литературы Приложение А. Прямое сопоставление воздействий нагрузки. Приложение В. Воздействие изменения надежности.	II105 105 105 108 112 115 118 122 124 124 124 124 124 124 125 130 136 143 150 151 152 158 160
ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ 1 1. Введение 2. Расчетная точка 3. Частные коэффициенты 4. Общий случай оценки уровня надежности 5. Пример с армированной бетонной плитой 6. Общий случай оценки вероятности разрушения конструкции 7. Надежность системы 8. Заключение Список литературы Приложения. 1. Введение. 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности. 5. Результаты для общего сечения. 6. Заключение. Список литературы Приложения 1. Введение. 2. Основные сочетания нагрузки. 3. Общий элемент конструкции 4. Принципы анализа надежности. 5. Результаты для общего сечения. 6. Заключение. Список литературы Приложение А. Прямое сопоставление воздействий нагрузки. Приложение В. Воздействие изменения надежности. Приложение С. Условные обозначения	II105 105 105 108 112 115 118 122 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 125 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136 130 136

Руководство по основам конструктивной надежности зданий и анализу рисков, изложенных в Еврокодах, дополненное практическими примерами

ГЛАВА І. ОСНОВНЫЕ ПОНЯТИЯ, СВЯЗАННЫЕ С КОНСТРУКТИВНОЙ НАДЕЖНО-СТЬЮ ЗДАНИЙ

Милан Холики ¹ и Тон Враувенвельдер ²

¹ Институт Клокнера, Чешский технический университет, Прага, Чехия

² Делфтский технический университет, Организация прикладных научных исследований в сфере строительства, Нидерланды

Краткая информация

Нельзя полностью устранить неопределенности, оказывающие влияние на работу конструкции, поэтому их следует учитывать при создании проекта любого строительства. В прошлом были разработаны и признаны различные методы проектирования и практические процедуры проверки конструктивной надежности. Наиболее современный практический метод частных коэффициентов основан на вероятностных понятиях конструктивной надежности и полученном ранее опыте. Общие принципы конструктивной надежности могут быть использованы для подробного описания и дальнейшей проверки частных коэффициентов и других параметров надежности. Кроме того, разработанные методы расчета и удобное в использовании программное обеспечение, наряду с использованием вероятностных понятий и доступных экспериментальных данных, могут напрямую использоваться для проверки конструктивной надежности.

1. Введение

1.1 Справочные материалы

В ряде национальных стандартов, новом европейском документе EN 1990 [1] и международном стандарте ISO 2394 [2] содержится систематизированное описание основных понятий конструктивной надежности. Дополнительная информации представлена в справочном издании, выпущенном «Объединенным комитетом надежности конструкций» (JCSS) [3] и в недавно опубликованном руководстве по использованию стандарта EN 1990 [4]. Рекомендации по применению вероятностных методов оценки конструктивной надежности можно найти в рабочих материалах, предоставленных «Объединенным комитетом надежности конструкций» (JCSS) [5] и в соответствующих изданиях, перечисленных в списке литературы (см. [4] и [5]). Элементарные методы теории надежности описаны в Главах II и III настоящего Руководства 2.

1.2 Основные принципы

Основные принципы конструктивной надежности описаны в международных изданиях EN 1990 [1] и ISO 2394 [2]. Основные требования, которым должны отвечать конструкции, изложены в разделе 2 стандарта EN 1990 [1]: конструкция должна быть спроектирована и выполнена таким образом, чтобы в течение предполагаемого срока эксплуатации и с соответствующей степенью надежности и экономичности она могла выполнять следующие требования:

- выдерживать нагрузку, которая может быть приложена во время возведения или эксплуатации при выполнении различных работ или от воздействия внешних факторов;
- сохранять пригодность к использованию для выполнения назначенной функции.
- Следует отметить, что упоминаются два четко обозначенных аспекта надежность и экономичность (см. также Руководство 1). Однако, в настоящем Руководстве 2 рассматривается преимущественно надежность конструкций, включающая в себя:
- несущую способность конструкции;
- эксплуатационную пригодность;
- долговечность.

Дополнительные требования могут быть связаны с обеспечением огнестойкости (см. Руководство 5) или другими аварийными расчетными ситуациями. Например, по требованиям стандарта EN 1990 [1] в случае пожара несущая способность конструкции должна сохраняться в течение требуемого периода времени.

Для обеспечения всех аспектов конструктивной надежности, обеспечение которых предполагается указанными выше основными требованиями, следует определить проектный срок службы, ситуации и предельные состояния (см. Руководство 1). Необходимо обратить внимание, что базовый срок службы здания – 50 лет, и что, как правило, выделяется четыре расчетные ситуации – постоянная, переходная, аварийная, и сейсмическая. Предельных состояний, как правило, выделяется два – критическое предельное состояние и предельное состояние эксплуатационной пригодности. Подробное описание представлено в Руководстве 1.

2. Неопределенности

2.1 Классификация неопределенностей

Общепризнанным фактом является то, что здания и сооружения представляют собой сложную техническую систему, на работу которой на всех этапах выполнения работ и последующей эксплуатации объекта влияет ряд существенных неопределенностей. В зависимости от характера конструкции, условий окружающей среды и приложенных воздействий некоторые виды неопределенностей становятся более значимыми, чем другие. В целом можно выделить следующие виды неопределенностей:

- случайная природа воздействий, свойства материалов и геометрические параметры;
- статистическая неопределенность из-за ограниченного количества имеющихся данных;
- неопределенности оценки с помощью моделей несущей способности и воздействия нагрузки вследствие упрощения фактических условий;
- неясность, возникающая вследствие неточности определений, описывающих эксплуатационные требования;
- грубые ошибки, допущенные при проектировании, возведении и эксплуатации конструкции;
- недостаток знаний о поведении новых материалов и некоторых воздействиях в фактических условиях.

Порядок, в котором перечислены неопределенности, примерно соответствует уменьшению степени имеющихся знаний и количества доступных методов для теоретического описания неопределенностей и их рассмотрения в процессе проектирования (см. следующие разделы). Следует отметить, что большинство из приведенных выше неопределенностей (степень случайности, статистическая неопределенность и неопределенность моделей) нельзя полностью устранить. Эти неопределенности должны учитываться при планировании любых строительных работ.

2.2 Доступные методы описания неопределенностей

Естественная степень случайности и статистическая неопределенность могут с относительной точностью быть описаны доступными методами, которые предлагают теория вероятности и математическая статистика. Фактически, в стандарте EN 1990 [1] представлены некоторые рекомендации по использованию таких доступных методов. Однако, недостаток надежных экспериментальных данных (например, о новых материалах, некоторых воздействиях, включая влияние окружающей среды, а также о новых геометрических характеристиках) является причиной возникновения существенных проблем. В отдельных случаях имеющиеся данные являются неоднородными. Они были получены в разных условиях (например, данные о сопротивлении материалов, приложенной нагрузке, влиянии окружающей среды, а также о внутренних размерах поперечного сечения железобетонного элемента). Затем может быть трудно, если вообще возможно, проанализировать и использовать эти данные при проектировании.

Степень неопределенности результатов, получаемых с помощью вычислительных моделей можно в определенной степени оценить, основываясь на данных теоретических и экспериментальных исследований. В стандарте EN 1990 [1] и материалах «Объединенного комитета надежности конструкций» (JCSS) [5] представлены некоторые соответствующие рекомендации. Неопределенность, возникающая вследствие неточности определений (в особенности, описывающих эксплуатационную пригодность и другие эксплуатационные требования), может быть частично описана при помощи теории «нечетких множеств». Однако, эти методы с практической точки зрения – малополезны, поскольку применимые для таких случаев экспериментальные данные редко доступны. Знания о поведении новых материалов и конструкций могут быть постепенно расширены посредством выполнения ряда теоретических анализов, результаты которых затем должны быть верифицированы при проведении экспериментального исследования.

При наличии грубых ошибок и нехватки знаний очевиден недостаток доступных теоретических методов, при этом именно ошибки и недостаточные знания приводят к разрушению конструкции. Для того, чтобы ограничить количество совершаемых грубых ошибок вследствие деятельности человека с большой эффективностью может быть введена система менеджмента качества, которая включала бы в себя методы статистической проверки и контроля.

Различные методы проектирования и эксплуатации, в которых учитываются эти неопределенности, разработаны и используются по всему миру. Теория конструкционной надежности обеспечивает базовые принципы методов и теоретические основы для описания и анализа перечисленных выше неопределенностей, связанных с конструктивной надежностью.

3. Надежность

3.1 Общие положения

Понятие «надежность» зачастую нечетко сформулировано, и требует некоторых пояснений. В большинстве случаев «надежность» может иметь только два состояния, т.е. конструкция является либо надежной, либо ненадежной. Если придерживаться такого подхода, то положительная оценка означает, что «разрушение конструкции не произойдет никогда». К сожалению, подобная интерпретация чрезмерно упрощает положение вещей. Возможно, это неприятно, и для многих людей даже неприемлемо, но гипотетическая идея об «абсолютной надежности» для большинства конструкций (за исключением редких случаев) попросту не существует. В целом, разрушение любой конструкции может (хоть и с небольшой или минимальной долей вероятности) произойти, даже если конструкция заявлена как «надежная».

Интерпретация дополнительного (негативного) утверждения, как правило, воспринимается более корректно: разрушение конструкции рассматривается как некоторое явление, которое может произойти в реальности, и в этом случае обсуждается уже вероятность или частота случаев разрушения конструкции. Фактически, при разработке проекта необходимо обращать внимание на то, что существует некоторая небольшая вероятность разрушения конструкции в течение ее назначенного срока эксплуатации. В противном случае проектировать объекты гражданского назначения будет абсолютно невозможно. Какова в таком случае правильная интерпретация понятия «надежность»? Какое значение имеет широко используемая формулировка «конструкция надежна и безопасна»?

3.2 Определение термина «надежность»

В различных публикациях, а также национальных и международных изданиях используется несколько определений термина «надежность». Определение надежности из стандарта ISO 2394 [2] похоже на формулировку из национальных стандартов, используемых в некоторых европейских странах: надежность – это способность конструкции отвечать поставленным требованиям в заданных условиях в течение ее предполагаемого срока эксплуатации. В количественном отношении надежность может быть определена как дополнение к вероятности разрушения.

Следует отметить, что приведенное выше определение надежности включает в себя четыре важных компонента:

- заданные (эксплуатационные) требования определение разрушения конструкции,
- период времени оценка необходимого срока службы конструкции Т,
- степень надежности оценка вероятности разрушения конструкции Р_f
- условия эксплуатации ограничение неопределенности исходных данных.

Четкая формулировка эксплуатационных требований, и, следовательно, точное определение понятия «разрушение» крайне важны. Во многих случаях, при определении требований, предъявляемых к конструкции в отношении ее прочности и устойчивости к разрушению, формулировка понятия «разрушение» не является очень сложной. Однако, во многих других случаях, особенно когда требования касаются обеспечения комфортных условий для пользователей здания, внешнего вида и характеристик внутренней среды помещений, на правильность формулировок понятия «разрушение» влияет ряд размытых и неточных описаний. Преобразовать эти требования, выдвигаемые пользователями здания, в соответствующие технические количественные параметры и подобрать для них точные критерии очень трудно, и зачастую, попытка это осуществить приводит к определению заметно отличающихся условий.

В настоящем документе термин «разрушение» используется в наиболее общем смысле этого слова, и обозначает просто любое нежелательное состояние конструкции (например, обрушение или чрезмерную деформацию), которые однозначно определяются условиями, в которых находится конструкция.

В стандарте ISO 2394 и Еврокоде EN 1990 [1] приведено одно и то же определение, включая примечание о том, что понятие «надежность» включает в себя несущую способность, пригодность к эксплуатации и долговечность конструкции. Основные требования включают в себя следующее положение (как упоминалось выше): «конструкция должна быть спроектирована и выполнена таким образом, чтобы в течение предполагаемого срока эксплуатации и с соответствующей степенью надежности и экономичности она могла выдерживать нагрузку, которая может быть приложена во время возведения или эксплуатации, при выполнении различных работ или от воздействия внешних факторов, а также сохранять пригодность к эксплуатации для выполнения назначенной функции». Как правило, в отношении несущей способности и пригодности конструкции или ее отдельных частей к эксплуатации может быть принят разный уровень надежности. В документах [1] и [2] вероятность разрушения P_f («probability of failure» - прим. пер.) (и индекс надежности (β)) приведены в зависимости от опасности последствий разрушения (см. Руководство 1).

3.3 Вероятность разрушения конструкции

Наиболее важным термином, который был использован выше (а также в теории конструктивной надежности) является, по-видимому, понятие «вероятности разрушения «Р_f». Для того чтобы представить точное определение для понятия «вероятность разрушения «P_f» делается допущение о том, что работа конструкции может быть описана при помощи определенного набора основных переменных $X = [X_1, X_2, ..., X_n]$, характеризующих воздействия, механические свойства, геометрические параметры и неопределенности данных, полученных при моделировании. Кроме того, предполагается, что предельное состояние (критическое предельное состояние, состояние эксплуатационной пригодности, долговечность и предельное состояние вследствие усталости конструкции) конструкции определяется при помощи функции предельного состояния (или функции работоспособности), как правило, записанной в виде неявной функции:

$$Z(X) = 0 (1)$$

Функция предельного состояния Z(X) должна быть определена таким образом, чтобы она была положительной для описания благоприятного (безопасного) состояния конструкции, $Z(X) \ge 0$, а для описания неблагоприятного состояния конструкции (разрушения) – отрицательной, Z(X) < 0 (более подробное объяснение представлено в следующих далее главах настоящего Руководства 2).

Для большинства предельных состояний (критического предельного состояния, состояния эксплуатационной пригодности, долговечности и предельное состояние вследствие усталости конструкции) степень вероятности разрушения конструкции может быть выражена в виде следующей формулы:

$$P_f = P\{Z(X) < 0\}$$
 (2)

Определить уровень вероятности разрушения «P_f» можно в том случае, если основные переменные $X = [X_{Lr}, X_{2r}, ..., X_n]$ описаны при помощи соответствующих вероятностных (численных или аналитических) моделей. Если основные переменные $X = [X_{Lr}, X_{2r}, ..., X_n]$ описаны при помощи функции плотности распределения суммарной вероятности, которая не зависит от времени, $\phi_X(x)$, то степень вероятности P_f может быть определена при помощи следующего интеграла:

$$P_f = \int \varphi_X(x) dx$$
$$Z(X) < 0 \quad (3)$$

В случаях, когда некоторые из основных переменных зависят от времени, необходимо использовать более сложные методы расчета. Некоторые детали, касающиеся теоретических моделей для параметров, зависящих от времени (в большинстве случаев характеризующих воздействия), а также использования этих моделей при выполнении оценки конструктивной надежности представлены в других главах настоящего Руководства 2. Однако, во многих случаях эта задача может быть преобразована в задачу, зависящую от времени, например, при помощи рассмотрения в уравнении (2) или (3) минимума функции *Z*(*X*) в течение периода времени *T*.

Необходимо заметить, что существует ряд различных методов [2] и компьютерных программ [7, 8, 10] для расчета вероятности разрушения P_f, значение которой определяется по уравнению (2) или (3).

3.4 Индекс надежности

Эквивалентом термина «вероятность разрушения» является термин «индекс надежности β », формально определяемый как отрицательное значение стандартной переменной, распределенной по нормальному закону, соответствующее вероятности разрушения P_f. Таким образом, следующее соотношение может быть использовано для определения индекса надежности:

$$\beta = -\Phi_U^{-1}(P_f)$$
 (4)

 $-\Phi_{U}^{-1}$ (P_f) здесь описывает функцию обратного стандартного нормального распределения.

В настоящее время индекс надежности β , определяемый по формуле (4), является количественным показателем конструкционной надежности, как правило, используемой в нескольких международных документах [1], [2], [5].

Следует отметить, что вероятность разрушения P_f и индекс надежности β являются полностью эквивалентными количественными показателями надежности с взаимно-однозначными соответствиями, представленными в формуле (4), и показанными в виде чисел в таблице 1.

Таблица 1. Соотношение единиц измерения вероятности разрушения P_f

И	индекса	надежности	β
---	---------	------------	---

Pf	10 -1	10 -2	10 ⁻³	10 ⁻⁴	10 ⁻⁵	10 ⁻⁶	10-7
β	1,3	2,3	3,1	3,7	4,2	4,7	5,2

По стандартам EN 1990 [1] и ISO 2394 [2] основная рекомендация в отношении требуемого уровня надежности, как правило, формулируется при помощи единиц измерения индекса надежности β , относящегося к определенному расчетному сроку эксплуатации.

3.5 Временное изменение вероятности разрушения конструкции

Когда вектор основных переменных $X = [X_1, X_2, ..., X_m]$ изменяется во времени, вероятность разрушения P_f также изменяется во времени и должна всегда соотноситься с определенным базовым периодом времени *T*, который в большинстве случаев может отличаться от расчетного срока эксплуатации конструкции *T*_d. Расчетное значение вероятности разрушения конструкции при заданном уровне надежности $p_d = p_n$, относящееся к общему базовому периоду времени $T_n = nT_1$, может быть получено при помощи альтернативного значения вероятности $p_a = p_1$, относящегося ко времени $T_a = T_1$ (обратите внимание, что для упрощения условного обозначения использованный ранее нижний индекс «d» в данном случае соответствует «n», а нижний индекс «а» соответствует «1»). Подробное описание этого преобразования представлено в главе III.

4. Задачи проектирования

4.1 Ориентировочные значения расчетного срока эксплуатации конструкции

Расчетный срок эксплуатации конструкции *T_d* является предполагаемым периодом времени, в течение которого конструкция или ее часть должны использоваться по назначению, с обеспечением ожидаемого уровня обслуживания, но без необходимости выполнения крупного ремонта. В недавно вышедших документах CEN [1] и ISO [2] представлены ориентировочные значения *T_d* для пяти категорий конструкций, см. таблицу 2.

Более подробное описание категорий конструкций и расчетные сроки эксплуатации можно найти в некоторых национальных стандартах. В целом, расчетные сроки службы конструкции могут превышать (в некоторых случаях на 100%) значения, представленные в таблице 2. Например, расчетный срок эксплуатации временных конструкций может быть 15 лет, сельскохозяйственных зданий – 50 лет, жилых и офисных зданий – 100 лет, а конструкций железнодорожной отрасли, плотин, тоннелей, и других подземных сооружений инженерного назначения – 120 лет и более.

Категория	Расчетный срок эксплуатации <i>Т</i> _d	Примеры
	(годы)	
1	10	Временные конструкции
2	от 10 до 25	Заменяемые части конструкции здания, опоры, балки
3	от 15 до 30	Сельскохозяйственные сооружения и здания похожей кон- струкции
4	50	Конструкции зданий и сооружений общего назначения
5	100 и более	Монументальные здания или объекты инфраструктуры, мосты

Таблица 2. Ориентировочные значения расчетного срока эксплуатации конструкций

4.2 Расчетный (целевой) уровень надежности

Значения расчетной вероятности разрушения p_d , как правило, указываются по отношению к ожидаемым социальным и экономическим последствиям разрушения. В стандарте EN 1990 [1] представлена классификация расчетных уровней надежности, в которую входят три класса по последствиям разрушения (высокий, средний и низкий) и определены соответствующие индексы надежности β для двух базовых периодов времени T (1 год и 50 лет). Источник исчерпывающей информации относительно расчетного срока эксплуатации конструкции T_d . не представлен. Подобные β -величины могут использоваться в некоторых национальных стандартах и международных стандартах ISO [2]. Подробное описание расчетного уровня надежности представлено в главе III настоящего Руководства 2.

Следует подчеркнуть, что две β -величины (β_a и β_d), рекомендуемые в издании [1] для каждого класса надежности (1 год и 50 лет) соответствуют тому же уровню надежности. Возможность применения этих величин на практике зависит от длительности базового периода времени T_a , который рассматривается в процессе верификации, и который может относиться к имеющейся информации о векторе основных переменных $X = X_L$, X_2 ,..., X_n , изменяющемся во времени. Например, при рассмотрении класса надежности 2 и расчетного срока службы конструкции 50 лет индекс надежности $\beta_d = 3,8$ должен использоваться для проверки конструктив-

ной надежности. Если рассматривается базовый период времени T_a длительностью 1 год и $\beta_a = 4,7$, достигается тот же уровень надежности, соответствующий классу 2. Таким образом, базовые периоды времени T_a в большинстве случаев, отличающиеся от расчетного срока эксплуатации T_{d_i} могут использоваться для достижения определенного уровня надежности.

5. Практические методы расчета

5.1 Общие положения

С течением времени методы расчета конструкции развивались и всегда были тесно связаны с доступными практическими и опытными данными, а также со знанием теоретической механики и теории вероятности. В двадцатом веке постепенно происходило становление различных практических методов, среди которых выделилось три широко используемых метода, применяющихся с различными модификациями в стандартах по проектированию конструкций вплоть до настоящего времени: метод расчета по допустимым напряжениям, метод общего коэффициента запаса прочности и метод частных коэффициентов. Все эти методы часто обсуждаются, и иногда пересматриваются и обновляются.

Далее представлено краткое описание исторического развития этих методов расчета, их общей структуры, с упоминанием соответствующих количественных параметров, используемых для того, чтобы учесть влияние всевозможных неопределенностей, связанных с основными переменными, и для управления итоговым уровнем конструктивной надежности. Кроме того, ниже описываются вероятностные методы оценки конструктивной надежности и их роль в дальнейшем развитии методов расчета. Подробное описание вероятностных методов оценки конструктивной надежности содержится в главах II,III и Приложении В настоящего Руководства 2.

5.2 Допустимое напряжение

Первым из признанных по всему миру методов расчета конструкции является метод расчета по допустимым напряжениям, основанный на линейной теории упругости. Основной способ расчета по данному методу может быть представлен в следующем виде:

$$\sigma_{\max} < \sigma_{per}$$
 : $\partial e \sigma_{per} = \sigma_{crit} / k$ (5)

Коэффициент k (превышающий 1) является единственной заданной в явном виде мерой оценки, которая должна учитывать все типы неопределенностей (некоторые неявно выраженные меры оценки могут быть скрыты). Кроме того, только локально приложенное воздействие (напряжение) $\sigma_{\rm max}$ сопоставимо с допусти-

мым напряжением $\sigma_{\it per}$, и, следовательно, локальное (упругое) поведение конструкции используется для

обеспечения ее надежности. Надлежащего метода учета геометрической нелинейности, распределения напряжения и пластичности строительных материалов и элементов не существует. Поэтому, использование метода расчета по допустимым напряжениям, как правило, приводит к созданию консервативного и неэкономичного проекта.

Однако, главным недостатком метода расчета по допустимым напряжениям является отсутствие достаточной возможности для рассмотрения неопределенностей индивидуальных основных переменных, а также нехватка вычислительных компьютерных моделей для оценки регулирующего эффекта нагрузки и несущей способности конструкции. Следовательно, уровень надежности конструкций, подвергающихся различным воздействиям, и изготовленных из разных материалов, может быть не только завышенным (экономически неоправданным), но и значительно разнящимся.

5.3 Общий коэффициент запаса прочности

Второй широко использующийся метод расчета конструкции – это метод общего коэффициента запаса прочности. По существу, он основан на расчете, связанном со стандартным или номинальным значениями несущей способности конструкции *R* и воздействия нагрузки *E*. Это может быть описано следующим уравнением:

$$s = R/E > s_0$$
 (6)

Таким образом, значение расчетного коэффициента запаса прочности *s* должно превышать указанное значение S_0 (например, $S_0 = 1,9$, как правило, необходимо для расчета прочности на изгиб элементов из железобетона). Метод расчета при помощи общего коэффициента запаса прочности пытается учесть предположения о реалистичном поведении элементов конструкции, и их поперечном сечении, геометрической нелинейности, распределении напряжения и пластичности; в особенности посредством результирующих значений несущей способности конструкции *R* и эффекта воздействия *E*.

Однако, как и в случае метода расчета по допустимым напряжениям, основным недостатком этого метода остается отсутствие достаточной возможности рассмотрения неопределенностей определенных основных величин, а также нехватка теоретических моделей. Вероятность разрушения может быть определена, опятьтаки, только одной явной величиной, общим коэффициентом запаса прочности *s*. Очевидно, возможность согласовать, какой уровень надежности присущ различным элементам конструкции, изготовленным из разных материалов, ограничена.

5.4 Метод частных коэффициентов

В настоящее время наиболее продвинутым практическим методом расчета конструкции [1,2] является метод частных коэффициентов (иногда ошибочно называемый методом расчета конструкции по предельным состояниям), который зачастую применяется с учетом понятия предельных состояний (критическое предельное состояние, предельное состояние эксплуатационной пригодности, предельное состояние вследствие усталости конструкции). Этот метод может быть в целом описан при помощи следующего неравенства:

$$E_d(F_d, f_d, \alpha_d, \theta_d) < R_d(F_d, f_d, \alpha_d, \theta_d)$$
(7)

где расчетные показатели эффекта воздействия E_d и несущей способности конструкции R_d определяются, исходя из расчетных значений основных переменных, характеризующих воздействия $F_d = \psi \gamma_F F_k$, свойства материалов $F_d = F_k / \gamma_m$, размеры $\alpha_d + \Delta \alpha$ и неопределенности моделей θ_d . Расчетные значения этих величин определяются (с учетом различных неопределенностей) с помощью их характеристических значений ($F_k, f_k, \alpha_k, \theta_k$), частных коэффициентов γ , коэффициентов ослабления ψ , и других количественных показателей надежности. Таким образом, вся система частных коэффициентов и других показателей надежности может быть использована для управления уровнем конструктивной надежности. Подробное описание метода частных коэффициентов, используемого в Еврокодах, представлено в Руководстве 1.

В отличие от описанных ранее методов расчета структура метода частных коэффициентов, очевидно, обеспечивает большую возможность согласовать, какой уровень надежности присущ различным типам сооружений, изготовленных из различных материалов. Однако, следует обратить внимание на то, что ни в одном их перечисленных выше методов расчета вероятность разрушения напрямую не учитывается. Следовательно, вероятность разрушения различных конструкций, изготовленных из различных материалов, все-таки, может существенно варьироваться, даже несмотря на применение сложных процедур калибровки. Необходимо выполнение дальнейших процедур вероятностной калибровки показателей надежности. Для этого можно использовать рекомендации, представленные в международном стандарте ISO 2394 [2] и европейском документе EN 1990 [1].

5.5 Вероятностные методы

Вероятностные методы расчета, описанные в международном стандарте [2], основаны на требовании о том, что в течение срока эксплуатации сооружения T вероятность разрушения P_f не должна превышать расчетного значения p_d или индекс надежности β должен превышать его расчетное значение β_d .

$$P_f \leq P_d$$
или $\beta > \beta_d$ (8)

В стандарте EN 1990 [1] основным рекомендуемым значением индекса надежности для критических предельных состояний β_d =3,8 соответствует расчетной вероятности разрушения p_d =7.2×10⁻⁵, для предельных состояний эксплуатационной пригодности значение равное β_d =1,5 соответствует p_d =6.7×10⁻². Эти значения относятся к расчетному сроку эксплуатации 50 лет, который устанавливается для конструкций зданий и сооружений общего назначения. В большинстве случаев, когда для проверки конструктивной надежности используется краткий базовый период времени (один или два года) следует использовать значения β , превышающие указанные.

Следует упомянуть, что вероятностные методы еще не вошли в обычную практику расчета конструкции. Однако, существуют разработанные процедуры расчета и компьютерные программы (например, см. [7,8] и [10]), которые позволяют выполнить прямую проверку конструктивной надежности с использованием вероятностных концепций и имеющихся опытных данных. Недавно разработанная компьютерная программа «СоdeCal» [10] в первую очередь предназначена для калибровки норм на основе метода частных коэффициентов.

В главе II настоящего Руководства 2 будет представлено много примеров для иллюстрации описанных в этой главе методов.

6. Расчет с учетом опытных данных

В некоторых случаях необходимо выполнять расчет на основе данных, полученных в ходе испытаний и вычислений, например, если отсутствует подходящая вычислительная модель. Испытания включают в себя всевозможные методы тестирования, начиная от исследований в аэродинамической трубе до испытаний опытных образцов новых конструкционных материалов, элементов или сборных конструкций. Испытания могут также проводиться в ходе строительства или по его завершении для подтверждения предположений, сделанных в ходе расчета конструкции. Экстремальным примером может служить максимальная нагрузка. Для расчета конструкции могут использоваться следующие типы испытаний: а) испытания для непосредственного определения прочности конструкции при заданных условиях нагружения;

б) испытания для определения специфических свойств материала;

в) испытания для снижения неопределенности моделей, связанных с нагрузкой, эффектом нагрузки или моделями несущей способности.

Испытание должно проводиться и оцениваться таким образом, чтобы можно было обеспечить обычно требуемый уровень надежности. При определении характеристического или расчетного значения следует учитывать разброс экспериментальных данных, статистическую неопределенность, присущую ряду испытаний, а также ранее полученные статистические данные. В случае, если поведение конструкции или ее элемента или сопротивление материалов зависит от воздействий, не изученных в ходе проведения испытаний в должной мере, таких, например, как влияние длительности или масштаба, необходимо внести поправки.

При оценке результатов испытаний поведение испытательных образцов и характер разрушения следует сравнивать с теоретическими прогнозами. В случае существенного отклонения от прогноза необходимо найти объяснение. Для этого, возможно, потребуется проведение дополнительных испытаний, может быть в других условиях, или будет необходима модификация теоретической модели.

Для оценки результатов испытаний следует использовать статистические методы. В Еврокодах используются как байесовский метод, так и классические частотные методы. При использовании последних следует задать границы интервала достоверности. Ширина интервала достоверности может влиять на итоговое значение. В среднем, граница достоверности, составляющая 0,75, ведет к получению такого же результата при помощи байесовского метода. Поэтому в большинстве случаев задается значение границы достоверности равное 0,75, хотя используются и другие значения (например, 0,85 в стандарте EN 1995).

В «Основах проектирования» предпочтение отдается байесовским методам, которые, в целом, в большей степени соответствуют современной теории надежности, чем частотные методы. Кроме того, байесовские методы обеспечивают формальную основу для использования накопленных ранее знаний, которые необходимы, особенно если испытательные образцы имеют небольшой размер и применяются методы контроля качества. В большинстве Еврокодов содержатся особые правила работы с образцами небольшого размера, но, как правило, формальная основа отсутствует.

Правила разработки и оценки расчета конструкции посредством проведения испытаний представлены в Приложении D стандарта EN 1990 «Основы проектирования». Подробное описание и рабочие примеры представлены в Приложении A настоящего Руководства 2.

7. Заключение

Основные понятия вероятностной теории надежности можно охарактеризовать при помощи двух эквивалентных терминов – вероятности разрушения P_f и индекса надежности β . Хотя при помощи этих величин можно получить лишь ограниченное количество информации о фактической частоте разрушений, они остаются наиболее важными и широко используемыми мерами оценки уровня конструктивной надежности. Эти меры помогут эффективно использовать теорию конструктивной надежности для дальнейшего согласования элементов надежности, а также для углубленного применения обобщенного метода для новых инновационных конструкций и материалов.

Периодический пересмотр методов расчета, принятых на вооружение по всему миру для проверки конструктивных элементов, указывает на существование разных методов рассмотрения неопределенностей основных переменных и вычислительных моделей. Метод допустимых напряжений на практике оказывается достаточно консервативным (и неэкономичным). Метод общего коэффициента запаса прочности и метод частных коэффициентов приводят к тому же результату. Очевидно, что метод частных коэффициентов, адаптированный в недавно изданных документах серии EN, представляет собой наиболее продвинутый метод расчета, с помощью которого можно добиться надлежащего уровня надежности, относительно приближенного к рекомендуемому в стандарте EN 1990 значению (β = 3,8). Наиболее значимым преимуществом метода частных коэффициентов является возможность учета неопределенности индивидуальных основных переменных посредством корректировки (калибровки) соответствующих частных коэффициентов и других параметров надежности.

Частично различные критерии надежности (характеристические значения, частные коэффициенты и коэффициенты ослабления) в новых стандартах по расчету конструкции с использованием метода частных коэффициентов основаны на вероятностных методах конструктивной надежности, а частично (в большей степени) на знаниях, полученных при проведении испытаний. Очевидно, что ранее приобретенный опыт зависит от локальных условий – воздействий окружающей среды и традиционно используемых строительных материалов. Эти аспекты могут быть разными в разных странах. Поэтому, в каждой стране следует выбирать соответствующие подходящие элементы надежности и параметры, из тех, которые представлены в настоящем комплекте европейских стандартов. Оказывается, что дальнейшее согласование имеющихся в настоящее время методов расчета основано на стандартизации процедур, оптимизации методов и других рациональных подходах, включая использование методов теории вероятности, математической статистики и теории надежности. Вероятностные методы конструктивной надежности являются наиболее значимым способом постепенного улучшения и адаптации метода частных коэффициентов для различных конструкций, изготовленных из разных материалов. Кроме того, разработанные компьютерные программы позволяют применять методы теории надежности напрямую для проверки конструкций с использованием вероятностных понятий и имеющихся в наличии данных.

Расчет с учетом опытных данных может быть использован тогда, когда он должен основываться на сочетании испытаний и вычислений. Испытания могут включать в себя всевозможные методы тестирования, начиная от исследований в аэродинамической трубе до испытаний опытных образцов новых конструкционных материалов, элементов или сборных конструкций. Испытания могут также проводиться в ходе строительства или по его завершении для подтверждения предположений, сделанных в ходе расчета конструкции. Рекомендуемая практическая процедура [1] описана в главе IV настоящего Руководства 2.

Список литературы

[1] EN 1990 Eurocode - Basis of structural design. CEN 2002.

[2] ISO 2394 General principles on reliability for structures, ISO 1998.

[3] JCSS: Background documentation, Part 1 of EC 1 Basis of design, 1996.

[4] Gulvanessian, H. - Calgaro, J.-A. - Holicky, M.: Designer's Guide to EN 1990, Eurocode: Basis of Structural Design; Thomas Telford, London, 2002, ISBN: 07277 3011 8, 192 pp.

[5] JCSS: Probabilistic model code. JCSS working materials, http://www.jcss.ethz.ch/, 2001.

[6] EN 1991-1-1 Eurocode 1 Actions on structures. Part 1-1 General actions. Densities, self-weight, imposed loads for buildings, CEN 2002

[7] VaP, Variable Processor, version 1.6, ETH Zurich, 1997.

[8] COMREL, version 7.10, Reliability Consulting Programs, RCP MUNICH, 1999.

[9] ISO 13822. Basis for design of structures - Assessment of existing structures, ISO 2001.

[10] CodeCal, Excel sheet developed by JCSS, http://www.jcss.ethz.ch/.

Приложения

ATTACHMENTS

1. MATHCAD sheet "Beta-Time.mcd"

Mathcad sheet "Beta-Time" is intended for transformation of probability and reliability index Beta" for different reference periods.

Attachment 1 - MATHCAD sheet "Beta-Time.mcd"

ГЛАВА II. БАЗОВЫЕ МЕТОДЫ ОЦЕНКИ НАДЕЖНОСТИ КОНСТРУКЦИЙ I

Милан Голицки¹ и Тон Фроувэнфелдер²

¹ Институт им. Клокнера, Чешский технический университет в Праге, Чешская республика

² Делфтский технический университет, Нидерландская организация прикладных научных исследований в сфере строительства, Нидерланды

Краткая информация

Характеристика базовых методов оценки надежности конструкций дается на основе основного случая с двумя случайными переменными, при котором функция предельного состояния сформулирована как разница между полученной несущей способностью конструкции и воздействием нагрузки. Первоначальное допущение о нормальном распределении обеих полученных переменных обобщается до любого типа распределения вероятностей. Описанные методы расчетов проиллюстрированы рядом численных примеров, которые приведены в таблицах МАТНСАD и EXCEL. Дополнительная информация о базовых методах оценки надежности конструкций представлена в Приложении В.

1. Введение

1.1 Справочные материалы

Основные понятия и методики оценки надежности конструкций подробно описаны в ряде национальных стандартов, в новом европейском стандарте EN 1990 [1] и международном стандарте ISO 2394 [2]. Дополнительную информацию можно найти в справочном документе, разработанном «Объединенным комитетом надежности конструкций» (JCSS) [3] и в недавно опубликованном руководстве к стандарту EN 1990 [4]. Руководство по применению вероятностных методов надежности конструкций можно найти в публикациях и рабочих материалах, подготовленных «Объединенным комитетом надежности конструкций» (JCSS) [5] и в соответствующей литературе, приведенной в [4] и [5].

1.2 Основные принципы

Теория надежности конструкций рассматривает все основные переменные как случайные величины, обладающие соответствующими типами распределения вероятностей. Для воздействий, свойств материалов и геометрических данных необходимо рассматривать различные типы распределений. Кроме того, необходимо принимать во внимание неопределенности моделей воздействий и моделей несущей способности. Предварительные теоретические модели основных переменных и методик для вероятностного анализа указаны в документах «Объединенного комитета надежности конструкций» (JCSS) [5].

2. Основные случаи надежности конструкций

2.1 Общие положения

Главная задача теории надежности конструкций связана с основным требованием к соотношению эффекта воздействия *E* и несущей способности конструкции *R*, сформулированной в виде неравенства

E < R (1)

Условие (1) представляет собой желаемое (удовлетворительное, безопасное) состояние рассматриваемого элемента конструкции. Предполагается, что разрушение конструкции произойдет тогда, когда условие (1) не будет выполняться. Таким образом, предполагаемое четкое (однозначное) различие между желаемым (безопасным) и неприемлемым состоянием (разрушением) конструкции дано в виде уравнения:

$$R - E = 0$$
 (2)

В уравнении (2) представлена основная форма границы разрушения, называемая функцией предельного состояния (функцией работоспособности) (см. также главу I настоящего Руководства 2). Следует отметить, что для некоторых элементов и материалов конструкций предположение о четкой границе разрушения может быть весьма условным, и может быть принято только приблизительно. Такой случай показан в следующем Примере 1.

Пример 1.

Стальной стержень, изображенный на рис. 1, обладает прочностью на разрыв $R = \pi d^2 f_y / 4$, где d -диаметр стержня, а f_y — предел текучести. Вес нагрузки на стержень составляет $E = V\rho$, где V — объем, а ρ — плотность объемной массы груза. Таким образом, неравенство (1) имеет вид:

$$V\rho < \pi d^2 f_v / 4$$

Тогда функция предельного состояния (2) будет иметь вид:

 $\pi d^2 f_v / 4 - V \rho = 0$

В данном примере предельное состояние определяется как состояние, при котором напряжение стержня достигнет предела текучести f_y . Данное упрощение допустимо во многих общих случаях, однако (в зависи-

мости от типа конструкционной стали), оно может не соответствовать фактическому разрушению стержня. В частности, когда используется пластичная конструкционная сталь с деформационным упрочнением, то разрушение (разрыв) произойдет, когда напряжение достигнет предела прочности стали, значительно превышающего предел текучести.

При проведении всех численных расчетов могут использоваться таблицы MATHCAD SteelRod.mcd, DesVRod.mcd, приведенные в приложении.

Рис. 1. Стержень.

Обе переменные *E* и *R*, как правило, являются случайными величинами и справедливость неравенства (1) не может быть абсолютно гарантирована, т.е. иметь вероятность, равную 1 (полная уверенность). Таким образом, необходимо признать, что предельное состояние, представленное в уравнении (2), может быть превышено, и разрушение может произойти с некоторой долей вероятности. Ключевой задачей теории надежности является оценка вероятности разрушения *P*_f и определение необходимых условий для ограничения этой величины. Для выполнения простого условия в виде неравенства (1) вероятность разрушения может быть формально представлена в виде:

$$P_{\rm f} = P(E > R)$$
 (3)

Случайный характер эффекта воздействия *E* и несущей способности *R*, которые выражены посредством подходящей переменной (показателя производительности) *X* (т.е. напряжения, силы, изгибающего момента, прогиба), как правило, характеризуется соответствующей функцией распределения, а именно, функциями распределения $\Phi_{\mathcal{E}}(x)$, $\Phi_{\mathcal{R}}(x)$ и соответствующими функциями плотности вероятности $\phi_{\mathcal{E}}(x)$, $\phi_{\mathcal{R}}(x)$, где x — общая точка рассматриваемой переменной *X*, используемой для выражения обеих переменных *E* и *R*. Распределения переменных *E* и *R* далее зависят от соответствующих параметров, например, от параметров моментов $\mu_{\mathcal{E}}$, $\sigma_{\mathcal{E}}$, $\omega_{\mathcal{E}} \mu_{\mathcal{R}}$, $\sigma_{\mathcal{R}}$ и $\omega_{\mathcal{R}}$. Далее предположим, что *E* и *R* взаимно независимы (что достигается путем соответствующих преобразований).

На рис. 2 приведен пример функций плотности распределения вероятности обеих переменных *E* и *R*, и их взаимоположение. Типы распределения и их параметры на рис. 2 приведены с целью демонстрации. В частности, параметры моментов (средние значения и стандартные отклонения) могут рассматриваться как относительные значения, выраженные в процентном соотношении от среднего значения несущей способности μ_R (т.е. нормированной с помощью μ_R).

Следует отметить, что функции плотности распределения вероятности $\phi_{e}(x)$ и $\phi_{R}(x)$, приведенные на рис. 2, пересекаются, и, таким образом, становится ясно, что неблагоприятные реализации переменных *E* и *R*, обозначенные строчными буквами *e* и *r*, могут оказаться в соотношении *e* > *r*, т.е. воздействие нагрузки превысит значение несущей способности, вследствие чего произойдет разрушение. Очевидно, что для того, что-

бы удерживать вероятность разрушения $P_{\rm f} = {\rm P}(E > R)$ в пределах допустимости, параметры переменных *E* и *R* должны соответствовать определенным условиям (связанным с взаимным расположением и вариациями обоих распределений) в зависимости от типов распределения.

Случайная переменная Х

Рис. 2. Эффект воздействия Е и несущая способность R как случайные переменные.

Желаемые условия, несомненно, будут включать тривиальное неравенство $\mu_E < \mu_R$ (см. рис. 2). Очевидно, что данное «требование к взаимоположению» обоих распределений не является достаточным условием для обеспечения указанной вероятности разрушения $P_{\rm f}$. Верные условия должны также включать условия для вариаций обеих переменных. Более подробно это будет рассмотрено при дальнейшем обсуждении основных примеров оценки надежности конструкций.

2.2 Основные случаи оценки с одной случайной переменной

Для начала рассмотрим частный случай, когда одна из переменных *E* или *R*, например, эффект воздействия *E*, имеет очень низкую (пренебрежимо малую) изменчивость по сравнению с изменчивостью несущей способности *R*. В таком случае *E* может рассматриваться как неслучайная (детерминированная) переменная, т.е. такая переменная, которая достигает определенного фиксированного значения $E_0(E = E_0)$ в каждой своей реализации. Данное допущение, несомненно, может рассматриваться как аппроксимация в некоторых практических случаях. Один из таких случаев — подверженный нагрузке стальной стержень из Примера 1, в случае с которым вес подвешенного груза может быть определен достаточно точно (т.е. без значительной неопределенности). Данный частный случай изображен на рис. 3, где эффект воздействия представлен фиксированным значением $e_0 = 80$ ($\mu_E = 80$, $\sigma_E = 0$) и несущая способность по логарифмически нормальному распределению имеет среднее значение $\mu_R = 100$, $\sigma_R = 10$ (все численные данные нормализованы до безразмерных величин).

Вероятность отказа $P_{\rm f}$ в данном частном случае детерминированного воздействия нагрузки, изображенном на рис. 3, может оцениваться напрямую с помощью функции распределения $\Phi_{R}(x)$ по аналогии с квантилем. Значение e_0 можно просто определить как квантиль несущей способности R, для которого вероятность $P_{\rm f}$ может быть рассчитана посредством следующего уравнения:

$$P_{\rm f} = P(R < e_0) = \Phi_R(e_0)$$
 (4)

Значение функции распределения Φ_R (E_0), как правило, определяется по таблицам стандартизированной случайной величины U, для которой вычисляется значение u_0 , соответствующее E_0 . Это следует из общей формулы преобразования:

 $u_0 = (e_0 4 - \sigma_R) / \sigma_R$ (5)

Probability density $\phi_R(x)$

Плотность вероятности $\varphi_R(x)$

Детерминированное воздействие нагрузки $E: e_0 = 80$, ($\mu_E = 80, \sigma_E = 0$) Случайная несущая способность R, логарифмически нормальное распределение, $\mu_R = 100, \sigma_R = 10$ Случайная переменная X

Рис. 3. Детерминированное значение эффекта воздействий *Е* и случайное значение несущей способности *R*.

Вероятность разрушения будет дана следующим образом:

$$P_{\rm f} = {\rm P}(R < e_0) = \Phi_R(e_0) = \Phi_U(u_0)$$
 (6)

где $\Phi_U(u_0)$ — значение функции распределения стандартизированной случайной величины соответствующего распределения (например, нормального или логарифмически нормального).

Следует отметить, что значение - u_0 — это расстояние фиксированного значения E_0 эффекта воздействия E от среднего значения μ_R несущей способности R, выраженное в единицах стандартного отклонения σ_R . Если распределение несущей способности R является нормальным, то данное расстояние называется индексом надежности β .

$$\beta = (\mu_R - e_o) / \sigma_R$$
 (7)

и вероятность разрушения может быть выражена следующим отношением

 $P_{\rm f} = P(R < e_0) = \Phi_U(-\beta)$ (8)

Как правило, индекс надежности *в* определяется как отрицательная величина стандартизированной нормальной переменной, соответствующей вероятности разрушения $P_{\rm f}$. Таким образом, в качестве определения может быть принято следующее отношение (см. Главу I настоящего Руководства)

$$\beta = \Phi_U^{-1}(\rho_f)$$
 (9)

где $\Phi_{U}^{-1}(
ho_{f})$ — обратная стандартизированная нормальная функция распределения. В настоящее время

индекс надежности β, определение которого дано в уравнении (9), является широко используемым средством вычисления надежности конструкций в некоторых национальных и международных документах (см. также Главу I настоящего Руководства 2). Однако следует отметить, что распределение вероятностей несущей способности *R* может отличаться от нормального распределения.

Пример 2.

Допустим, несущая способность *R* имеет среднее значение $\mu_R = 100$ (выраженное в безразмерных единицах), стандартное отклонение $\sigma_R = 10$ (коэффициент вариации составляет $V_R = 0,10$). Для детерминированного значения эффекта воздействия задано значение $e_0 = 80$ (см. рис. 3). Если *R* имеет нормальное распределение, то индекс надежности следует непосредственно из уравнения (7)

$$\beta = (100 - 80) / 10 = 2$$

и вероятность разрушения следует из отношения (8)

$$P_{\rm f} = P(R < 80) = \Phi_{u}(-2) = 0.023$$

где $\Phi_u(-2)$ является значением функции распределения стандартизированного нормального распределения при u = -2. Однако, если распределение *R* не является нормальным, а логарифмически нормальным с нижним пределом, равным нулю (асимметрия составляет $\omega_R = 3V_R + V_R^{-3} = 0,301$ [9]), то оно следует из уравнения (5)

$$u_0 = (80 - 100)/10 = -2$$

Тогда вероятность разрушения $P_{\rm f}$ будет равна

$$P_{\rm f} = P(R < 80) = \Phi_{\rm LN\,II}(-2) = 0.014$$

где $\Phi_{\rm LN,U}(-2)$ является функцией распределения стандартизированной случайной величины U с логарифмически нормальным распределением с нижним пределом, равным нулю (асимметрия составляет $\omega = 0,301$). Полученные вероятности различаются незначительно, однако их значения достаточно велики.

Если заданное значение эффекта воздействия уменьшается до $e_0 = 70$, то при нормальном распределении несущей способности *R* индекс надежности β = 3, и вероятность разрушения составляет

$$P_{\rm f} = P(R < 70) = \Phi_{\rm u}(-3) = 0,00135$$

Если распределение несущей способности *R* является логарифмически нормальным с нижним пределом, равным нулю, то

$$P_{\rm f} = P(R < 70) = \Phi_{\rm LN\,U}(-3) = 0,00021$$

Индекс надежности, определяемый с помощью уравнения (9), будет равен $\beta = \Phi_U^{-1}(0,00021) = 3,53$, т.е. больше, чем значение 3, полученное при нормальном распределении несущей способности *R*.

Очевидно, что при воздействии нагрузки, равной всего $e_0 = 70$, полученная вероятность разрушения будет значительно ниже, чем в случае, когда $e_0 = 80$. Кроме того, численный пример также показывает, что допущение, касающееся типа распределения, играет важную роль и, может, в некоторых случаях иметь решающее значение.

2.3 Основной случай с двумя случайными переменными

Предположим, что обе основные переменные, эффект воздействия *E* и несущая способность *R* являются случайными величинами. В таком случае, как правило, сложнее оценивать вероятность разрушения, определяемую по уравнению (3). Простое решение может быть получено, если задать нормальное распределение для *E* и *R*. Тогда их разность,

$$Z = R - E$$
 (10)

называемая запасом прочности, также будет иметь нормальное распределение с параметрами

$$\mu_Z = \mu_R - \mu_E \quad (11)$$

$$\sigma_z^2 = \sigma_R^2 + \sigma_E^2 + 2\rho_{RE}\sigma_R^2\sigma_E^2$$
(12)

где ρ_{RE} – коэффициент корреляции *R* и *E*. Часто допускается, что *R* и *E* являются взаимно независимыми и ρ_{RE} = 0. Уравнение (3) для вероятности разрушения $P_{\rm f}$ теперь может быть представлено в виде:

$$P_{\rm f} = P(E < R) = P(Z < 0) = \Phi_{z}(0)$$
 (13)

и задача сводится к определению функции распределения $\Phi_Z(z)$, при z = 0, что приводит к вероятности того, что запас прочности Z будет отрицательным. Функция распределения $\Phi_Z(0)$ обычно определяется путем преобразования переменной Z в стандартизированную случайную величину U. Используя данное уравнение, получаем значение u_0 , соответствующее значению g = 0, и равное

 $u_0 = (0 - \mu_Z) / \sigma_Z = \mu_Z / \sigma_Z$ (14)

Тогда вероятность разрушения будет представлена, следующим образом:

$$P_{\rm f} = P(R < E) = \Phi_{Z}(0) = \Phi_{\rm U}(u_{0})$$
 (15)

Функция плотности распределения вероятности $\phi_{z}(z)$ запаса прочности Z показана на рис. 4, где серая область под кривой $\phi_{z}(z)$ соответствует вероятности разрушения $P_{\rm f}$.

При условии, что Z имеет нормальное распределение, значение $-u_0$ называется индексом надежности, который, как правило, обозначается символом β . При условии нормального распределения запаса прочности Z, из уравнений (11), (12) и (14) следует, что индекс надежности β можно представить в виде простого отношения

$$\beta = \mu_Z / \sigma_Z = \frac{\mu_R - \mu_E}{\sqrt{\sigma_R^2 + \sigma_E^2 + 2\rho_{RE}\sigma_R^2\sigma_E^2}}$$
(16)

Если величины *R* и *E* являются взаимно независимыми, то коэффициент корреляции ρ_{RE} стремится к нулю ($\rho_{RE} = 0$). Таким образом, индекс надежности β будет расстоянием от среднего значения μ_R запаса прочности *Z* до начала координат, представленным в единицах стандартного отклонения σ_Z .

Пример 3.

Еще раз рассмотрим Пример 2, в котором несущая способность R и воздействие нагрузки E – взаимно независимые случайные величины ($\rho_{RE} = 0$) с нормальным распределением. Несущая способность R будет иметь среднее значение $\mu_R = 100$, вариация $\sigma_R = 10$ (коэффициент вариации, таким образом, будет равен лишь w = 0,10), а эффект воздействия *E* будет иметь среднее значение $\mu_E = 80$ и $\sigma_E = 8$ (выраженные в безразмерных единицах). Согласно уравнениям (11) и (12):

 $\mu = 100 - 80 = 20$

$$\sigma_z^2 = 10^2 + 8^2 = 12,81^2$$

Так как обе основные переменные *R* и *E* имеют нормальное распределение, индекс надежности *β* следует напрямую из уравнения (16)

 $\beta = 20/12,81 = 1,56$

и вероятность разрушения следует из отношения (8)

 $P_{\rm f} = P(Z < 0) = \Phi_U(-1,56) = 0,059$

Если переменные *E* и *R* не являются нормальными, то распределение запаса прочности *G* также не будет нормальным, и описанный выше подход придется изменить. В общих случаях можно использовать численное интегрирование или преобразование обеих переменных в переменные с нормальным распределением. Приведение к нормальному распределению в основном используется в программах.

Для первичной оценки вероятности разрушения $P_{\rm f}$ может быть использована приближенная простая методика вычислений. Запас прочности *Z* может быть приближен посредством логарифмически нормального распределения с тремя параметрами. Предположим, что распределения *E* и *R* зависят от параметров моментов $\mu_{Er} \sigma_{Er} \omega_{Er} \mu_{Rr} \sigma_{R}$ и ω_{R} . Среднее значение и вариация запаса прочности *Z* могут быть вычислены с помощью приведенных выше уравнений (11) и (12), которые верны при переменных с произвольным распределением. При условии, что *E* и *R* являются взаимно независимыми, асимметрия ω_{Z} запаса прочности *Z* может быть рассчитана в соответствии с приближенной формулой (см. Приложение А «Основные статистические понятия и методы» настоящего Руководства 2)

$$\boldsymbol{\varpi}_{Z} = \frac{\boldsymbol{\sigma}_{R}^{3}\boldsymbol{\omega}_{R} - \boldsymbol{\sigma}_{E}^{3}\boldsymbol{\varpi}_{E}}{(\boldsymbol{\sigma}_{R}^{2} + \boldsymbol{\sigma}_{R}^{2})^{3/2}}$$
(17)

Далее предположим, что запас прочности Z может быть описан с достаточной точностью с помощью логарифмически нормального распределения с заданными параметрами моментов μ_{Zr} , σ_Z и ω_Z (уравнения (11), (12) и (17)). Показано, что данное приближение дает удовлетворительные результаты, при условии, что вероятность разрушения не слишком мала.

Пример 4.

Рассмотрим растяжку с несущей способностью R, на которой подвешен груз весом E. Пусть R – логарифмически нормальная переменная с минимальным значением, равным нулю, и с параметрами (также выраженными в безразмерных единицах) $\mu_R = 100$ и $\sigma_R = 10$ (и, следовательно, $\omega_R = 0,301$), а E обладает распределением Гумбеля с параметрами моментов $\mu_E = 50$ и $\sigma_E = 10$ (распределение Гумбеля [9] имеет положительную асиметрию $\omega_E = 1,14$).

Параметры моментов запаса прочности рассчитываются в соответствии с уравнениями (11), (12) и (17)

$$\mu_{Z} = \mu_{R} - \mu_{E} = 100 - 50 = 50$$

$$\sigma_{G}^{2} = \sigma_{R}^{2} + \sigma_{R}^{2} = 10^{2} + 10^{2} = 14,14^{2}$$

$$\varpi_{Z} = \frac{\sigma_{R}^{3} \varpi_{R} - \sigma_{E}^{3} \varpi_{E}}{\left(\sigma_{R}^{2} + \sigma_{E}^{2}\right)^{3/2}} = \frac{10^{3} \times 0,301 - 10^{3} \times 1,14}{\left(10^{2} + 10^{2}\right)^{3/2}} = -0,30$$

Для стандартизированной случайной переменной из уравнения (14) следует, что

 $u_0 = -\mu_Z / \sigma_Z = -50 / 14, 14 = -3, 54$

Для логарифмически нормального распределения с асимметрией μ_Z = - 0,30 верно следующее уравнение:

$$P_{\rm f} = P(R < E) = \Phi_{\rm LN,U}(-3,54) = 0,00101$$

что соответствует индексу надежности β = 3,09. Более точный результат, полученный благодаря применению программы VaP [7], составляет $P_{\rm f}$ =0,00189.

Однако если при оценке вероятности разрушения асимметрия не принимается во внимание и предполагается условие нормального распределения, то следует: $P_{\rm f} = P(R < E) = \Phi_{\rm U}(-3,54) = 0,00020$

что существенно отличается от результата, полученного при предполагаемом логарифмически нормальном распределении.

Для всех численных расчетов могут использоваться таблицы MATHCAD StRod.mcd, DesVRod.mcd, приведенные в приложении.

3. Точное решение для двух случайных переменных

В случае с двумя случайными переменными E и R с любым распределением, можно достичь точного расчета вероятности разрушения $P_{\rm f}$, определяемого с помощью формулы (3), используя интегрирование вероятности. На рис. 5 приводится пояснение к данному методу. Пусть событие A обозначает проявление эффекта воздействия E на протяжении дифференциального интервала времени < x, x + dx >. Вероятность события Aопределяется следующим образом:

$$P(A) = P(x < E < x + dx) = \varphi_E(x)dx$$
(18)

Обозначим буквой *В* событие, при котором несущая способность *R* встречается на протяжении интервала времени $< -\infty, x >$. Вероятность события *B*[9] определяется следующим образом:

$$P(B) = P(R < x) = \varphi_R(x)$$
(19)

Дифференциальное приращение вероятности разрушения dP_f , соответствующее наличию переменной *E* в интервале времени < x, x + dx >, вычисляется с помощью вероятности одновременного наступления событий *A* и *B*, т.е., вероятности их пересечения $A \cap B$. В соответствии с принципом умножения вероятностей [10] получаем следующее выражение:

$$dP_{f} = P(A \cap B) = P(A)P(B) = P(x < E < x + dx)P(R < x) = \Phi_{R}(x)\varphi_{E}(x)dx$$
(20)

В данном примере применяется представленное выше допущение о взаимной независимости переменных *Е* и *R* и, как следствие, событий *A* и *B*.

Probability density $\phi_E(x)$, $\phi_R(x)$

Интегрирование дифференциального отношения (20) в интервале времени, в котором одновременно присутствуют обе переменные E и R (как правило, в интервале времени <- ∞ , ∞ >), приводит к следующему отношению:

 $\rho_{\rm f} = \int \Phi_{\rm R}(x) \varphi_{\rm E}(x) dx \tag{21}$

Интегрирование отношения (21), как правило, приходится проводить численно или используя методы моделирования (например, прямые методы Монте-Карло).

В таблице MATHCAD PrLnLn.mcd, приведенной в приложении, содержится простая программа, которая может быть использована для расчетов численного интегрирования отношения (21) при условии, что обе переменные *E* и *R* могут быть определены (по крайней мере, приблизительно) посредством общего логарифмически нормального распределения (с тремя параметрами).

Пример 5.

Эффект воздействия *E* и несущая способность *R* характеризуются логарифмически нормальным распределением с теми же параметрами, как и в Примере 4 (распределение Гумбеля для *E* было заменено логарифмически нормальным распределением с теми же параметрами). Приближенное решение в Примере 4, основанное на логарифмически нормальном распределении с нижней границей, равной нулю, приводит к следующему значению вероятности разрушения $P_{\rm f} = P(R < E) = \Phi_{\rm LN,U}(-3,54) = 0,00101$. Численное интегрирование в соответствии с соотношением (21) с использованием программы MATHCAD дает нам решение $P_{\rm f} = P(R < E) = 0,000792$, программа VaP предлагает решение $P_{\rm f} = P(R < E) = 0,000707$, которые можно рассматривать как очень точное приближение.

Вероятность разрушения $P_{\rm f}$, рассчитываемую посредством прямого интегрирования, можно определить с помощью таблицы MATHCAD PrLnLn.mcd при заданных параметрах переменных *E* и *R* ($\mu_R = 100$, $\sigma_R = 10$, $\mu_E = 50$ и $\sigma_E = 10$). Вариация вероятности разрушения $P_{\rm f}$ с коэффициентами асимметрии ω_E и ω_R представлена на Рис. 6.

Согласно рис. 6, вероятность разрушения $P_{\rm f}$ в значительной степени зависит от асимметрий ω_E и ω_R (в соответствии с предполагаемыми теоретическими моделями), а в реальных условиях данная вероятность может отличаться в несколько раз, даже если средние величины и стандартные отклонения переменных *E* и *R* остаются неизменными.

Асимметрия ω_R

Рис. 6. Вероятность отказа $P_{\rm f}$ в зависимости от коэффициентов асимметрий ω_E и ω_R при $\mu_R = 100$, $\mu_R = 10$, $\sigma_E = 50$ и $\sigma_E = 10$.

В результате, определить вероятность разрушения в случае с простым примером, представленным неравенством (1), где используются только две случайные величины *E* и *R*, легко только тогда, когда обе переменные распределяются нормально. Если они распределяются иначе, тогда произвести точное решение более сложно, и полученные значения в значительной степени зависят от предполагаемого типа распределения. Приближенное решение при условии общего логарифмически нормального распределения (с тремя параметрами) *E* и *R* обеспечивает довольно точную первичную оценку вероятности разрушения. Однако полученные значения необходимо проверять с помощью более точных методов, использующих соответствующие теоретические модели *E* и *R*.

4. Заключение

Базовые методы надежности конструкций могут быть использованы для оценки надежности в основных случаях двух случайных переменных, когда функция предельного состояния сформулирована как разность между полученной несущей способностью конструкции и воздействием нагрузки.

Основные принципы теории надежности обеспечивают методы проведения вычислений, которые могут быть использованы для оценки частных коэффициентов основных переменных. Однако оценка различных показателей надежности в новых нормах проектирования конструкций частично основана на статистическом и эмпирическом опыте. Безусловно, опыт прошлого зависит от местных условий, включая климатические воздействия и традиционно используемые строительные материалы и, как следствие, может значительно различаться в разных странах. Именно поэтому количество элементов и параметров надежности в настоящем своде европейских стандартов не фиксировано и зависит от национальных особенностей.

Список литературы

[1] EN 1990 Eurocode - Basis of structural design. CEN 2002.

[2] ISO 2394 General principles on reliability for structures, ISO 1998.

[3] JCSS: Background documentation, Part 1 of EC 1 Basis of design, 1996.

[4] Gulvanessian, H. - Calgaro, J.-A. - Holicky, M.: Designer's Guide to EN 1990, Eurocode: Basis of Structural Design; Thomas Telford, London, 2002, ISBN: 0 7277 3011 8, 192 p.

[5] JCSS: Probabilistic model code. JCSS working materials, http://www.jcss.ethz.ch/, 2001.

[6] EN 1991-1-1 Eurocode 1 Actions on structures. Part 1-1 General actions. Densities, self-weight, imposed loads for buildings, CEN 2002

[7] VaP, Variable Processor, version 1.6, ETH Zurich, 1997.

[8] COMREL, version 7.10, Reliability Consulting Programs, RCP MUNICH, 1999.

[9] Melchers R.E.: Structural Reliability Analysis and Prediction. John Wiley & Sons, Chichester, 437 p, 1999.

[10] Ang A.H-S. & Tang: W.H. 1975. Probabilistic Concepts in Engineering Planning and Design. Volume I - Basic principles. John Wiley, London, 1975, 409p.

Приложения

ATTACHMENTS

1. MATHCAD sheet "SteelRod.mcd"

Mathcad sheet SteelRod is intended to investigate an effect of the partial factor γG on reliability of a steel rod exposed to permanent load G.

2. MATHCAD sheet "DesVRod.mcd"

Mathcad sheet DesVRod is intended to investigate of sensitivity factor a_E and a_R and design values E_d and R_d.

3. MATHCAD sheet "PrLnLn.mcd"

Mathcad sheet PrLnLn is intended for calculation of the failure probability $Pf = P\{E>R\}$ based on approximation of E and R by three parameter lognormal distribution.

ГЛАВА III - ДИФФЕРЕНЦИАЦИЯ НАДЕЖНОСТИ

Милан Холицки¹⁾ и Яна Маркова¹⁾

1) Чешский технический университет в Праге, Чешская Республика

Общие положения

Основные элементы надежности, указанные в действующих стандартах по расчету конструкций, как правило, включают в себя вероятность разрушения, относящуюся к определенному базовому периоду *Т*. Требуемый уровень надежности зданий и других инженерных сооружений, как правило, определяется расчетной (целевой) вероятностью разрушения pd или соответствующим индексом надежности Bd, соответствующим указанному расчетному сроку службы Td (например, 50 лет). В верификации надежности расчетные значения Pd и Td иногда заменяются альтернативным индексом надежности Ba, полученным из расчетных значений Pd и Td для подходящего базового периода Ta (например, 1 год).

Представленное исследование объясняет взаимосвязи между альтернативными элементами Ва, Та и расчетными значениями Bd, Td, и обозначает соответствующие процедуры верификации надежности, когда рассматривается альтернативный базовый период Та. Подчеркивается, что верификацию на основе Ва, Та следует отличать от верификации временных или вспомогательных сооружений, когда сам расчетный срок службы Td короток. Теоретические обоснования и численные примеры показывают, что характеристические значения и частные коэффициенты основных переменных, описывающие свойства материалов и собственный вес, в значительной степени зависят от соответствующего базового периода.

1. Введение

1.1 Справочные документы

Последние документы [1], национальные [2], [3] и международные документы ([4] – [7]) предоставляют общие принципы и рекомендации по применению вероятностных методов к расчетам прочности конструкций. Последний европейский документ [5] и международные стандарты [6] и [7] также обозначают теоретическую основу так называемого «метода частных коэффициентов» и процедуры для определения частных коэффициентов свойств материалов и действий с помощью вероятностных принципов.

Основные элементы надежности, рассмотренные в этих процедурах включают вероятность разрушения р (или эквивалентный индекс надежности p), соответствующую определенному базовому периоду T, используемому в верификации конструктивной надежности. Базовый период T, используемый в верификации, может совпадать или не совпадать с расчетным сроком службы Td, то есть периодом времени, в течение которого сооружение должно функционировать надлежащим образом. Когда базовый период, используемый в верификации надежности отличается от Td, то он называется альтернативным периодом и обозначается в данном исследовании Ta.

1.2 Общие принципы

Основные вероятностные методы используются для анализа принципов дифференциации надежности. Точно так же, как и в главе I в данном руководстве два принципиально различных метода различаются в следующем:

- рассматривается альтернативный базовый период Та (например, 1 или 5 лет), который отличается от расчетного срока службы Td (например, 50 лет); этот метод применяется, когда вероятностные модели, связанные с периодом Ta более надежны, чем те, которые связаны с Td,

 - сам расчетный срок службы Та короток (например, 2 года, 5 или 10 лет); это пример временных или вспомогательных сооружений и сооружений в переходной ситуации проектирования (в процессе строительства или ремонта).

В последующем рассматриваются принципы дифференциации надежности, указанные в действующих международных документах [5,6,7] и связанные с ними процедуры определения мер надежности, которые должны применяться в примерах верификации с учетом различных расчетных сроков службы. Соответствующие элементы надежности (характеристические значения и частные коэффициенты) получены для свойств материалов, собственного веса и климатических воздействий (температура, снег и ветер) с учетом временной зависимости вероятности разрушения и индекса надежности.

2. Основные элементы надежности

Основные меры надежности включают вероятность разрушения и индекс надежности, представленные в главе I и II настоящего руководства. Вероятность потери несущей способности конструкции Pf в общем виде может быть определена следующим образом:

$$P_{\mathbf{f}} = \mathbb{P}\{Z(\mathbf{X}) < 0\}$$
(1)

Функция предельного состояния (работоспособности) *Z(X)* сформулирована таким образом, что надежный

(безопасный) домен вектора базисных переменных X = X, X_2 , ..., X_n соответствует неравенству Z(X) > 0,

а домен разрушения соответствует дополнительному неравенству *Z(X)* < **0**. Простой пример *Z(X)* описывает основное соотношение между полученным воздействием нагрузки *E* и сопротивлением *R*

$$Z(X) = Z = R - E$$
 (2)

Случайная переменная Z в уравнении (2) часто называется запасом надежности (безопасности); ее среднее значение *mz*, стандартное отклонение у *оz* и асимметрия *wz* могут быть получены из соответствующих характеристик итоговых переменных R и E, как указано в главе II.

Вместо вероятности отказа Pf, показатель надежности P часто используется при рассмотрении надежности как эквивалентное количество для Pf. Показатель надежности *B* связан с вероятностью разрушения Pf как уже указывалось в главе I

$$P_{\rm f} = \Phi(-\beta)_{(3)}$$

В этом уравнении, $\Phi()$ обозначает функцию распределения стандартизированного нормального распределения. Обратите внимание, что, если запас Z имеет нормальное распределение, то показатель надежно-

сти может быть определен просто как отношение pz и OZ, таким образом P = pz / OZ (в данном случае P

обозначает интервал среднего значения *pz* от исходного, если взять стандартное отклонение **OZ** за единицу измерения). Глава I показывает численное соотношение обеих величин. Следует подчеркнуть, что вероят-

ность разрушения PT и показатель надежности Р полностью представляют эквивалентные меры надежности с взаимно-однозначным общим соответствием, представленным в уравнении (3).

В недавнем европейском документе [5] расчетный срок службы обычных сооружений рассматривается как Pd = 50 лет, показатель надежности предельных состояний Pa = 3,8 соответствует расчетной вероятности

отказа Pd = 7,2 x 10-5 для предельных состояний Pa = 1,5 и PA = 6,7 x 10'2 (больше подходит термин «целевые вероятности», используемый в документах ИСО [6] и [7]). Эти величины рекомендованы в качестве разумных минимальных требований и подчеркивается, что Pd и Pa являются лишь формальными условно принятыми величинами и могут не соответствовать фактической частоте разрушения.

При анализе расчета конструкции, как правило, требуется следующее

$$P_{\rm f} \leq P_{\rm d}$$
 (4)

или, что является эквивалентом с точки зрения показателя надежности

$$\beta \ge \beta_{d}$$
 (5)

где Pd обозначает заданную расчетную (целевую) вероятность разрушения соответствующую целевому показателю надежности \mathcal{O}_{d^*}

Требования (4) или (5) должны быть использованы проектировщиками при применении вероятностных методов для верификации конструктивной надежности. Характерные целевые значения p_d и O_d заявлены в некоторых национальных стандартах (например, [2] и [3]) и с недавнего времени также указаны в международных документах (например, [4] [7]) для различных расчетных условий (предельных состояний, последствий разрушения и экономических аспектов).

3. Расчетный срок службы и надежность

Расчетный срок службы T_d представляет собой период времени, за который сооружение или его часть должны быть использованы по прямому назначению при ожидаемом техническом обслуживании в условиях отсутствия необходимости проведения капитального ремонта. В последних документах CEN [5] и ИСО [6] представлены характерные значения T_d для пяти категорий сооружений, как показано в главе I настоящего руководства.

Более подробная спецификация категорий сооружений и расчетных сроков службы доступна в документах ИСО [6, 7]. Как правило, расчетные сроки службы, указанные в [2], больше (в некоторых случаях на 100%), чем приведенные в главе I. Например, расчетный срок службы для временных сооружений, указанный в [2], составляет 15 лет, для сельскохозяйственных сооружений 50 лет, для жилых и офисных зданий 100 лет, а для железнодорожных сооружений, плотин, тоннелей и других подземных инженерных сооружений 120 лет.

Расчетные вероятности разрушения *p*_d, как правило, указываются с учетом ожидаемых социальных и экономических последствий. Таблица 1 показывает классификацию целевых уровней надежности, представленных в EN 1990 [5]. Показатели надежности В приведены лишь для двух базовых периодов T (1 год и 50 лет), без какой-либо явной связи с расчетным сроком службы Td. Аналогичным образом В-значения, как в таблице 1, приведены в [3] для предельных состояний, для которых, однако, расчетный срок службы составляет Td = 80 лет (для строительных сооружений).

Следует подчеркнуть, что пары значений 0 (O_a и A), указанных в таблице 1 для каждого класса надежности (для 1 года и 50 лет), соответствуют одному и тому же уровню надежности. Практическое применение этих значений зависит от периода времени Та, рассмотренного в верификации, который может быть связан с име-

ющейся информацией о переменном во времени векторе базисных переменных $X = X_1, X_2, ..., X_n$. Например, если рассматривается класс надежности 2 и расчетный срок службы 50 лет, то индекс надежности $O_d = 3,8$ должен быть использован в верификации конструктивной надежности. Этот же уровень надежности, соответствующий классу 2, получается, если используется период времени $T_a = 1$ год и $O_a = 4,7$. Таким образом, различные базовые периоды T_{a} , как правило, отличающиеся от расчетного срока службы T_{d_r} могут быть использованы для достижения определенного уровня надежности.

		Индекс над	дежности В	
	Последствия от потери челове- ческих жизней, экономические,	Ва для Т _а = 1 год	Bd для <i>T_d=</i> 50 лет	
Классы надежности	социальные и экологические последствия			Примеры зданий и гражданских инженерных сооружений
3 - высокая 2 - нормаль-	Значительные Средние	5,2 4,7	4,3 3,8	Мосты, общественные здания
ная 1 - низкая	Незначительные	4,2	3,3	Жилые и офисные здания Сельскохозяйственные сооруже- ния, теплицы

Таблица 1. Классификация надежности в соответствии с CEN [5]

Аналогичным образом целевые значения $P\!A$ приведены в ИСО 2394 [6] для расчетного срока службы ${
m Td}$

(называемого в ИСО «долговечность») без указания какого-либо конкретного значения Td. Как указано в таблице 2, два фактора для дифференциации надежности рассматриваются в [6]: относительная стоимость мер по обеспечению безопасности и последствия разрушения.

Таблица 2. Целевой индекс надежности Bd для расчетного срока службы	ľ	1,
представленный в ИСО 2394 [6]		

		Последств	ия разрушения	
Относительная стоимость мер по обеспечению безопасности	незначительные	некоторые	умеренные	значительные
Высокая	0	1,5	2,3	3,1
Умеренная	1,3	2,3	3,1	3,8
Низкая	2,3	3,1	3,8	4,3

Судя по всему, имеющиеся документы не дают четких рекомендаций о том, как учитывать расчетный срок службы Td. Оба международных документа CEN [5] и ИСО [6] дают целевое значение Bd для конкретных базовых периодов T, однако, не предлагается никакого явного правила для согласования целевого значения Bd с разными расчетными сроками службы Td, рекомендуемыми для различных видов строительных работ.

Тем не менее, некоторые указания приведены другом документе ИСО [7] для оценки существующих сооружений, где рекомендуется, чтобы уровни надежности для любого остаточного срока службы были похожи

на сроки, которые рассматриваются для расчетного срока службы Td в случае новых сооружений. Следовательно, аналогичные уровни надежности (выраженные в терминах вероятности *ра* или индекса надежности PA) могут быть рассмотрены при проектировании сооружений с различными расчетными сроками службы Td, например, для Ta = 50 лет и Ta = 25 лет.

4. Изменение вероятности разрушения со временем

Когда вектор основных переменных X = X \, Xi, ..., Xm время вариант, то вероятность отказа р также время вариант, и всегда должны быть связаны с определенной опорной периода T, который может быть как правило, отличается от конструкции трудовой жизни 7'А. Учитывая структуру данного уровня надежности, вероятность отказа дизайн PA = pn, связанных с отчетного периода Tn = N T \ может быть получена из альтернативного вероятности Pa = p \ соответствующее 7a = 7 \ (для простоты обозначения Отметим, что ранее 6 индекс "d" соответствует сейчас "N" и индекс "a" до "1"), используя приближенное отношения, приведенные в [6], [7]

$$P = L - (L - p0n (6))$$

Для очень маленьких вероятностей, эти отношения могут быть упрощены $aspn = p \setminus T / 7 \setminus$. Периоды времени 7 ^ и Tn может быть произвольной длины и $n = T "/ T \setminus$ не может быть целым числом; T \, однако, часто один год. Вероятность PN увеличивается (почти линейно) с TN.

Как следует из уравнения (6) следует, что показатели надежности P \ = P & и P = PA, приведены в соответствии с уравнением (3), как p \ = ® (-? / I) и pп = 0 (-? / П) связаны соотношением следующим образом [5]

Здесь 0 (.) Обозначает функцию распределения стандартизированных нормального распределения. Рисунок 1 показывает изменение Р "с Р \ n = 5, 25, 50 и 100. Обратите внимание, что, если учетный период 7 \ составляет один год, то п указывает на количество лет отчетного периода Т" (n = Tn).

Данные рис 1 подтверждает, указаны в таблице 1. Например, если целевой уровень надежности структуры определяется /% о = 3,8 для конструкции рабочей жизни Td = TN = 50 лет, то он может быть проверена с использованием базовый период T & = T \ = 1 год, и /? = f3 \ = 4,7. Когда, однако, тот же показатель надежности 3,8 указана для конструкции, имеющей срок службы конструкции Tn = 25 лет только, что (HS = 3,8, то надежность этой структуры может быть проверена с использованием альтернативного базисного периода T \ = 1 год и показатель надежности футов = 4,5, так же, когда /? 5 = 3,8, то /? 9 = 4,2 (рис 1).

Рисунок 1. Изменение рп с п \ п = 5, 25, 50 и 100

Заметим, что если 1-летний период будет использоваться для уточнения целевого уровня надежности структуры, тогда рисунок 1 содержит информацию о результате вероятности отказа соответствующего данной рабочей жизни Tn. Например, если целевой уровень надежности определяется индекс надежности P = 4,7 (в соответствии с вероятностью p $= 1,3 \times 10^{-1}$), то (как уже упоминалось) уровень надежности структуру, имеющую трудовой жизни, Tn = 50 лет характеризуется O = 3,8. Точно так же, когда период Tn = 5 лет используется, то P = 4,3 или при Tn = 100 лет, то /? БВК = 3,6.

Таким образом, уровень надежности структуры могут быть определены с использованием различных периодов времени 7 ", который может не совпадать с рабочим Life Design T &. Это может быть полезно, когда экспериментальные данные, касающиеся временный вариант основные переменные доступны для конкретного отчетного периода Т (например, 1 или 5 лет), который отличается от дизайна трудовой жизни тд. В таком случае, однако, все основные переменные (в том числе те, которые не зависят от времени) должны быть рассмотрены соответствующими значениями дизайна, относящиеся к той же отчетного периода Т. Следующий простой пример показывает эффект от использования базовый период Т, отличный от дизайн трудовой жизни с учетом переменное сопротивление (прочность), имеющий логнормальную.

5. Частный коэффициент свойства материала

Рассмотрим переменную R сопротивления (силы), имеющий логнормальную. Когда альтернатива отчетный период Та вместо дизайн трудовой жизни Td используется при проверке надежности структуры, то расчетное значение R должно быть определено для Ta вместо тд. Предполагается, что характерная величина РФ R определяется как ее 5% квантилю [5], [6] [7],

С учетом уравнений (8) и (9) следует, что частный коэффициент задается как

$$yR = Rk/Rd = exp(-1,645 x Is)/exp(~aR x /?a x VR)$$
 (10)

Учитывая выбранные значения коэффициента вариации VR, на рисунке 2 показывает коэффициент частичной год для логарифмически нормального распределения в R (уравнение (10)).

Как следует из фиг.2, что, когда надежность конструкции проверена с помощью короткого Альтернативный базовый период 7а (например например, для 7а = 1 год, когда /? = 4,7), частный коэффициент YR правило, должен быть больше, чем в случае, когда вся конструкция срок службы 7d (например, для 7d = 50 когда /? d = 3,8) считается. Следует отметить, что парциальное фактором YR из материала возрастает свойство R с увеличением значения индекса надежности /?.

Аналогичные выводы можно ожидать частных коэффициентов других основных переменных, в особенно для частных коэффициентов постоянных действий.

В уравнении (11) и (12) JUG обозначает среднее, О. стандартное отклонение, V (; коэффициент вариации и <; = - 0,7 коэффициент чувствительности группы G. частный коэффициент ус, из G определяется как

[5], [6] [7]

$$y = Gd / Gk (13)$$

Частные коэффициенты собственной нагрузки

Принимая во внимание уравнений (11) и (12) следует из (13) следует, что у (} = (1 + 0,7x /? Топор VG) (14)

Рисунок 3 показывает изменение парциального коэффициента Y-, с индексом надежности /? А для

Выбранные значения коэффициента вариации VG = 0,05; 0,10; 0,15 и 0,20. Обратите внимание, что ус = 1,35 (рекомендуется в EN 1990 [5]) примерно соответствует показателю надежности /? = 3,8, если коэффициент вариации составляет около 0,1 (значение в EN 1990 [5] была увеличена на 5% до учитывает неопределенность модели).

Если предположить, что коэффициент вариации 0,1 и для сопротивления R и собственного веса G 2 и 3 показывают, что парциальное коэффициент собственной массы YC, изменяется незначительно больше значительно с / а -? ценности, чем с частных коэффициентов год сопротивления переменного R. Этот вывод, однако, в зависимости от распределения принятых для обеих переменных.

7. Климатические воздействия и временные нагрузки

Проекты европейских документов для климатических воздействий в зависимости от температуры [8], снег [9] и ветер [10] показывают, возможное снижение характерных значений нормально для температуры, снеговой нагрузки и скорости ветра в случае короткого отсчета (Обратно) период (например, 5 лет), чем 50 лет, рассмотренных в обычных случаях. Такое снижение может быть применено в переходных расчетных ситуаций (например, во время выполнения).

Следующие соотношения для тепловых, снег и ветер действий, соответственно, рекомендуется в соответствующих частях Еврокода EN 1991:

() В соответствии с EN 1991-1-5 [8] Тепловые действия, максимальной и минимальной температуры оттенок воздуха Tmax, 50 / 7rnin, 50 для 50-летнего срока возврата может быть сокращен до TMA ^ J TMM "для« год срок окупаемости с использованием следующих формул

Tmax π = κ Rmax, 50, $κ = {κx - κ2 LN [-ln (LL / «)]} (15)$

ТММ п = к 7мин, 5о, при к = {к3 + кА Л.Н. [-ln (LL / «)]} (16)

где Tma ^ nITmm п максимальное / минимальное, а коэффициенты к \ = 0781, k2 = 0056, k2 = 0393, K \ = -0156 могут быть использованы (по данным Великобритании [11]),

(Б) В соответствии с EN 1991-1-3 [9] Снег действия Характеристика Значение снежного действия 5к, п, соответствующие периоду повторяемости п лет можно получить при помощи распределения Гумбеля как

1-V, - [Ln (- п (л - р)) + 0,57722]

Sk, п = к 5k, 50, где К = (17)

1-VS - [Ln (- LN (0,98)) + 0,57722] 7T

где Sk, 50 характеристика снеговая нагрузка на землю для 50-летнего срока возврата и Sk, при п-го года возвращение период, стр обозначает здесь вероятность 5 ^ N превышения соответствующая п лет срока возврата и Vs является Коэффициент вариации годового максимального снеговой нагрузки,

(C) в соответствии с EN 1991-1-4 [10] Основная скорость ветра Vb, "имея срок окупаемости п лет можно оценить с использованием полуэмпирических выражений

, И, \\ - К п (~ п (л - р)) ~ | ° 5 Vb, "= К Vb, так, где к = - (18) _ 1 - Л.Н. (- п (0,98))

где Vb, так основная скорость ветра для 50-летнего срока возврата и vb. "для« летнего периода возврата и р обозначает здесь вероятность Vb, "превышение соответствующая п лет срока возврата. Константа K в уравнении (18) следует из распределения Гумбеля как K = Vv ^ LN, где Vv обозначает коэффициент вариации среднегодовой скорости ветра. Приблизительная стоимость K = 0,2 (что соответствует коэффициенту вариации VV = 0,26) используется в следующем сравнения коэффициентов уменьшения K для рассматриваемых климатических воздействий.

В таблице 3 приведены коэффициенты снижения к, для климатических воздействий (применяемых в целом отношения Q ^ N = K Q ^ так) для выбранных периодов повторяемости п - лет.

Таблица 3. Коэффициент К для климатических воздействий (0L "= к 0k, так) для различных периодов

Return period	р	Reduction coefficient k for						
of <i>n</i> -years		$T_{\max,n}$	$T_{\min,n}$	S _{n,n}	$v_{b,n}$			
2 years	0,5	0,8	0,45	0,64	0,77			
5 years	0,2	0,86	0,63	0,75	0,85			
10 years	0,1	0,91	0,74	0,83	0,90			
50 years	0,02	1	1	1	1			

Это следует из таблицы 3, что характерно значение климатических действий может быть значительно уменьшена, если короче базисный период рассматривается в дизайне. Например, для 5-летнего срока возврата действий из-за снега и ветра сводится к 75 или 85% от собственных значений для 50-летнего срока возврата, аналогичным характерного значения максимальной температуры оттенок воздуха до 86%, минимальная тень воздуха температура даже до 63%. Обратите внимание, что при проверке мостовых настилов на этапах выполнения характерные значения однородных компонентов температурных данные о температуре оттенок воздуха [8],

Следует отметить, что ни сокращение частичных факторов нагрузки не указано в документах [8], [9] и [10], таким образом, на том же уровне, как надежность конструкции для 50-летнего срока службы описывается р & = 7,2 x 10 "5 (FY = 3,8) можно рассматривать также и для отчетного периода T = N лет. Конечно, разный уровень надежности (например сводится к /? D <3,8) может быть выбрана с учетом экономических и других аспектов в соответствии с принципами дифференциации надежности, рассмотренных выше.

Самым нагрузку можно также, возможно, уменьшается, когда считается короткое время ссылки так же, как климатических воздействий. Некоторые статистические данные имеются в документах ССПС [12], однако, выбор случайных свойств различных типов, установленных нагрузок сделать это очень трудно сформулировать общие правила. Если убедительные данные отсутствуют характерные значения, указанные в текущих документов может быть принято без какого-либо снижения.

Самым нагрузку можно также, возможно, уменьшается, когда считается короткое время ссылки так же, как климатических воздействий. Некоторые статистические данные имеются в документах ССПС [12], однако, выбор случайных свойств различных типов, установленных нагрузок сделать это очень трудно сформулировать общие правила. Если убедительные данные отсутствуют характерные значения, указанные в текущих документов может быть принято без какого-либо снижения.

8. Примеры

Рассмотрим стали структуры, имеющей конструкцию трудовой жизни T & = 50 лет, для которых Вероятность цель отказ указано ASPD = 7,2 x 10 "5 (/? d = 3,8). Вероятность отказа р для альтернативного отчетного периода Ta = 1 год, который считается в дизайне из-за данных, касающихся действий, будет ниже, чем вероятность целевой провал p < (p < Pd u /> Pd?); Из уравнения (6):

$$p_a = 1 - (1-7,2 \times 10^{5})^{1/50} = 1,44 \times 10^{6}$$

Когда базисный период Ta = T = 1 год считается в дизайне проверки, то Показатель надежности /? Из уравнения (7) в

$$/?i = -0^{-1}(1,44 \times 10^{6}) = 4,7$$

Индекс надежности (5 \ больше, чем целевое значение Pd = 3,8, установленного для дизайна трудовой жизни Td = 50 лет.

С помощью уравнения (10) парциальное коэффициент безопасности год для Ta = T \ = 1 год при условии, коэффициент вариации VR = 0,08 (что соответствует общей изменчивости прочности конструкционной стали) коэффициент надежности дано в (смотри также фиг.2)

$$YR = \exp(-1645 \times 0.08) / \exp(-0.8 \times 4.7 \times 0.08) = 1.18$$

Обратите внимание, что, когда дизайн трудовой жизни 7d = 50 рассматривается в проверке надежности, то:

$$YR = \exp(-1645 \times 0.08) / \exp(-0.8 \times 3.8 \times 0.08) = 1.12$$

Очевидно, что частный коэффициент / R увеличивается с уменьшением отчетного периода Та.

Парциальное коэффициент собственной массы YG дается уравнением (14). Предположим, опять-таки,

Указанный уровень надежности для проектирования 50-летнего срока службы дается Pd = 3,8. Если предположить, что коэффициент вариации VG = 0,1 и учитывая период времени один год для проверки надежности (Pi = /? = 4,7), то частичное Ю.Г. фактор, который должен быть использован,

Если проверка период равен рабочей жизни конструкции (Pa = P & = /? 50 = 3,8), то $Y_{G=} (1 + 0,7 \times 3,8 \times 0,1) = 1,27$

Таким образом, различия в YG является менее значительным, чем изменение в Уг (смотри также рисунок 3).

Другая задача проверка надежности сельскохозяйственной структуры, имеющей проектную рабочую жизнь 7а = 25 лет, для которых показатель надежности цель может быть уменьшена до ПА = 3,3 (табл 1). Это следует из уравнения (10) следует, что частный коэффициент год для Та = 25

 $Y_R = \exp(-1,645 \ge 0,08) / \exp(-0,8 \ge 3,3 \ge 0,08) = 1,08$

Коэффициент частичной YR может, поэтому, быть уменьшена с 1,15 до приблизительно 1,1. Однако его Следует подчеркнуть, что это снижение уг за счет уменьшения показателя целевой надежности Pa =, а не изза короткого проектного рабочего жизни TA = 25 вместо обычных TA = 50 лет.

Приложение включает в себя MathCAD лист "GammaRG", который может быть использован, чтобы сделать численные расчеты.

9. Заключение

- (1) В настоящее время международные документы целевые значения отказа связаны с экономическими аспектами мер безопасности и последствий разрушения конструкции лишь смутно, без какой-либо явной связи с различными разработчики, работающие живет ТП для различных типов конструкций.
- (2) При альтернатива вероятность отказа р и выводится для подходящим отчетного периода 7а от вероятности цель отказа Звуковая и дизайн трудовой жизни Т.А., частных коэффициентов и также должны быть указаны характерные значения переменных воздействий на р и и Т &.
- (3) Для временных сооружений, с короткой конструкции рабочей жизни Т.А., вероятность целевой отказа РА может быть определена в соответствии с общими принципами дифференциации надежности; надежности элементов для основных переменных должны быть получены в течение заданного ПА и ТА.
- (4) Частные коэффициенты /, полученные для альтернативного отчетного периода 7а отличной от ТА может значительно отличаться от значений, соответствующих проектной рабочей жизни ТА зависимости от РА и распределения соответствующих основных переменных.
- (5) Частичный коэффициент собственной массы YG, соответствующий альтернативного базового периода Та изменяется с /? А-значения менее значительно, чем парциальное фактор материала YR- собственности
- (6) Частные коэффициенты YR получены для альтернативного отчетного периода 7а один год может быть значительно больше, чем YR установленное для данной конструкции рабочей жизни TA.
- (7) В соответствии с рекомендациями Еврокодах, характерное значение для климатических воздействий из-за снега, соответствующей 5-летнего доходности (ссылка) срок может быть сокращен до 75% собственных значений для 50-летнего срока возврата, так же характерное значение ветра скорость может быть снижена до 85%, максимальной температуры до 86%, минимальной температуры до 63%.

Список литературы

- [1] Gulvanessian, H. Calgaro, J.-A. Holicky, M.: Designer's Guide to EN 1990, Eurocode: Basis of Structural Design; Thomas Telford, London, 2002, ISBN: 07277 3011 8, 192 pp.
- [2] CSN 730031 Structural reliability. Basic requirements for design. (Spolehlivost stavebnich konstrukci a zakladovych pud. Zakladni ustanoveni pro vypocet), CSNI 1990.
- [3] CSN 731401 Design of steel structures. (Navrhovani ocelovych konstrukci), CSNI 1998.
- [4] ENV 1991-1 Basis of design and actions on structures. Part 1: Basis of design. CEN 1994.
- [5] EN 1990 Eurocode Basis of structural design. CEN 2002.
- [6] ISO 2394 General principles on reliability for structures, ISO 1998.
- [7] ISO 13822. Basis for design of structures Assessment of existing structures, ISO 2001.
- [8] EN 1991-1-5 Eurocode 1 Actions on structures. Part 1-5: Thermal actions. CEN, 06/2002.
- [9] EN 1991-1-3 Eurocode 1 Actions on structures. Part 1-3: Snow actions. European Committee for Standardisation, 06/2002.
- [10] EN 1991 Actions on structures. Part 1-4: Wind load. European Committee for Standardisation, 06/2002.
- [11] G. Konig et al: New European Code for Thermal Actions, Background document, Report N. 6, University of Pisa, 1999.
- [12] JCSS: *Probabilistic model code.* JCSS working materials, <u>http://www.icss.ethz.ch/.</u> 2001.

Приложения

I . MATHCAD sheet "GammaRG.mcd"

MATHCAD sheet Gamma is intended for determination of the partial factor γ_R of the resistance R and the partial factor γ_G of the permanent load G.

2. MATHCAD sheet "PSIO.mcd"

MATHCAD sheet PSI0 is intended for determination of the Combination factor vj/0 for accompanying action.

3. MATHCAD sheet "PSI12.mcd"

MATHCAD sheet PSI12 is intended for determination of the combination factor ||/12 for accompanying action.

ГЛАВА IV. ПРОЕКТИРОВАНИЕ СОВМЕСТНО С ПРОВЕДЕНИЕМ ИСПЫТАНИЙ

Игорь Ковс 1

¹ Институт металлоконструкций, Любляна, Словения

Краткая информация

При определенных условиях проведение испытаний может быть желательно или необходимо для получения конкретных параметров проектирования. Типичные параметры, определяемые с помощью испытаний, включают воздействия на конструкцию, несущую способность конструкции или ее элементов и свойства материалов. Испытания также могут проводиться с целью калибровки параметров в теоретической модели несущей способности. Расчетное значение параметра может быть получено из результатов испытаний в качестве предполагаемого значения определенного квантиля рассматриваемого параметра. Пояснения к данным методам приведены для определения отдельных свойств и для определения вероятностной модели несущей способности.

1. Введение

1.1 Справочные материалы

В разделе 5.2 европейского стандарта EN 1990 [1] приведены наиболее общие принципы проектирования, сопровождаемого проведением испытаний, и дана ссылка на приложение D данного стандарта, где эти методы рассмотрены более подробно. Также пояснения к методам проектирования, сопровождаемого проведением испытаний, даны в приложении D международного стандарта ISO 2394 [2]. Эти стандарты различаются по ряду параметров в отношении к данному вопросу. Некоторые данные о вычислении статистических показателей приведены в международном стандарте ISO 12491 [3] и литературных источниках по статистике (например, [5]).

1.2 Основные принципы

При определенных условиях проведение испытаний может быть желательно или необходимо для получения конкретных параметров проектирования. Примеры таких возможных условий включают:

- отсутствие или несоответствие вычислительных моделей;
- использование большого количества схожих компонентов;
- случаи, когда вычислительная модель приводит к результатам с большим запасом;
- выведение новых расчетных формул;
- подтверждение предположений, сделанных при проектировании.

Неизвестные величины, оцениваемые по результатам испытаний, могут включать:

- воздействия на конструкцию (например, ветровые нагрузки);
- динамическую характеристику конструкции под воздействием постоянной или случайной нагрузки;
- прочность и устойчивость конструкции или ее элементов.

Уровень надежности конструкций, рассчитываемых при испытаниях, должен быть, по меньшей мере, таким же, как для конструкций, рассчитываемых только с помощью расчетных моделей.

Оценка результатов испытаний должна быть основана статистических методах. Результаты испытаний должны в принципе включать распределение вероятностей неизвестных величин, включая статистические неопределенности. Данное распределение является основой для получения расчетных значений и частных коэффициентов. Возможно использование классической статистической интерпретации, в случае если выполняется крупная серия испытаний, или при выполнении меньшей серии испытаний с целью калибровки модели с одним или несколькими параметрами. При выполнении небольшого количества испытаний, использование классической статистичеи предварительных данных о распределение классической интерпретации предварительных данных о распределении исследуемых величин, результаты испытаний можно интерпретировать как статистические, используя байесовские методы.

Расчетные значения для свойства материала, параметра модели или несущей способности модели должны быть получены из испытаний либо путем (а) оценки характеристического значения и применения соответствующих частных коэффициентов и коэффициентов преобразования, либо путем (б) прямого определения расчетного значения неявно или явно, отвечающего за требуемую надежность и преобразования результатов.

При определении характеристического значения необходимо принимать во внимание разброс результатов испытаний, статистическую неопределенность, которая связана с количеством испытаний и априорными статистическими данными. Частные коэффициенты должны быть заимствованы из соответствующих Европейских

норм проектирования. Вычислительные модели должны учитывать различия между запланированным порядком испытаний и реальным ходом испытаний.

В случае, когда используется метод (б), необходимо учитывать предельные состояния и требуемый уровень надежности.

1.3 Предварительные статистические понятия

Основная идея, положенная в уравнения для определения расчетных значений из испытаний, заключается в следующем: выборочные значения $x_1, x_2, ..., x_n$ (например, значения, полученные в результате *n*-го количества испытаний) могут рассматриваться как наблюдаемые значения *n* одной и той же случайной переменной *X*. Однако мы можем в равной степени рассматривать эти значения *n* как единичное наблюдение случайных переменных $n X_1, X_2, ..., X_n$ (случайного вектора **X**), которые имеют одинаковое распределение (распределение X) и являются независимыми, поскольку предполагается, что выборочные значения должны быть независимы.

Пример 1.

При проведении испытаний выборки *n* были получены значения $x_1, x_2, ..., x_n$ для параметра *X*. Предположим, параметр *X* является случайной переменной со средним значением μ и стандартным отклонением σ , каким является среднее значение *m* и стандартное отклонение *s* среднего значения выборки?

Для решения данной задачи используем одну из теорем теории вероятностей: если известны независимые случайные переменные *n* X₁, X₂,..., X_n, и *a*_i являются произвольными числами, то следующие выражения имеют силу:

$$E(\Sigma(a_iX_i)) = \Sigma a_i E(X_i)$$
(1)
$$D(\Sigma(a_iX_i)) - \Sigma a_i^2 D(X_i)$$
(2)

где E(X) и D(X) представляют собой среднее значение (ожидаемое значение) и отклонение (дисперсию) случайной переменной X. Высказывание о среднем значении справедливо, даже если переменные X_i не являются независимыми. Важно отметить также, что X распределяется произвольно.

Рассмотрим выборку $x_1, x_2, ..., x_n$ как реализацию случайных переменных $X_1, X_2, ..., X_n$. Тогда $M = \sum (X_i) / n$ также будет являться случайной переменной, реализация которой является средним значением выборки. Если принять $a_i = 1/n$ в представленных выше уравнениях, то получим следующие выражения для среднего значения *m* и стандартного отклонения *s* выборочного среднего значения:

$$m = E(M) = E(\Sigma(X_i)/n) - (\Sigma E(X_i))/n) = n\mu/n = \mu$$
(3)
$$s^2 = D(M) = D(\Sigma(X_i)/n) = (\Sigma D(X_i))/n^2) = n\sigma^2/n^2 = \sigma^2/n$$
(4)

Мы убеждаемся, что при увеличении числа выборок (количества испытаний), ожидаемое значение среднего значения остается прежним (и равным среднему рассчитываемому параметру), однако стандартное отклонение сокращается путем извлечения квадратного корня из числа выборок. Коэффициент вариаций среднего значения выборки равен:

$$V_{M} = s / m = \sigma / (\mu \sqrt{n}) = V_{X} / \sqrt{n}$$
 (5)

а также сокращает число выборок. Соотношение V_M / V_X показано на рис. 1.

Рис. 1. Соотношение V_M / V_X как функция числа выборок. V_M — коэффициент вариации среднего значения выборки, V_X — коэффициент вариации измеренного параметра.

Как было сказано выше, высказывания о распределении параметра X представлено не было. Вышеприведенные формулы применимы при произвольном распределении. Если случайная переменная X распределяется нормально, то и сумма $\sum X_i$ также распределяется нормально, как и среднее значение M. Это следует из того факта, что линейная комбинация нескольких нормальных случайных переменных также является нормальной случайной переменной (даже если эти переменные не являются независимыми, см. пример [5]). Схожее суждение справедливо для логарифмически нормального распределения: если случайная переменная X распределяется логарифмически нормально, то среднее значение M также распределяется логарифмически нормально. Прямое следствие определения: если X является нормальной случайной переменной, то $Y=\ln(X)$ является логарифмически нормальной случайной переменной.

Пример 2.

При испытаниях на растяжение предел текучести σ_{Y} и прочность на растяжение σ_{m} были измерены на *N*=45 образцах одного и того материала (стали). Образцы были цилиндрической формы с диаметром *d*. В таблице 1 даны измеренные значения (в миллиметрах и МПа). Для каждого случайного параметра σ_{Y} σ_{m} и *d* рассчитать коэффициент вариации V_{n} среднего значения выборок n=1,2...,N и, если предположить, что $V=V_{N}$ является коэффициентом вариации данного параметра, составить соотношение V_{n}/V как функцию числа выборок *n*. Сравнить с уравнение (5).

n	d	cry	Gm	n	d	CCy	СМ	n	d	CCy	OM	n	n	Су	om
1	7,98	816	924	13	7,98	832	949	25	8	818	907	37	7,98	829	930
2	8	845	944	14	7,98	811	932	26	7,98	828	940	38	7,98	810	904
3	8	832	948	15	7,97	840	937	27	7,99	817	941	39	7,96	832	925
4	7,99	830	925	16	8	839	934	28	7,97	851	959	40	7,99	823	916
5	7,98	846	969	17	8	855	943	29	7,98	855	970	41	7,98	826	957
6	7,95	821	937	18	7,98	830	928	30	7,99	847	947	42	8	829	931
7	7,98	826	928	19	8	833	934	31	7,98	822	921	43	7,98	815	910
8	7,99	822	934	20	7,98	826	934	32	7,98	836	925	44	7,98	826	942
9	7,96	841	956	21	7,98	836	942	33	7,97	830	945	45	8	823	932
10	7,99	807	946	22	7,98	843	948	34	7,99	830	938				
11	7,97	831	942	23	7,98	840	937	35	7,98	845	945				
12	7,98	830	926	24	8	847	928	36	8	829	934				

Габлица 1. Рез	ультаты испытаний на	растяжение.
•		

В первую очередь рассчитаем последовательные средние значения $m_1 = x_1$, $m_2 = (x_1 + x_2)/2$, ..., $m_N = (x_1 + x_2 + ... + x_N)/N$. Затем рассмотрим m_{ii} как реализацию случайной переменной и получим среднее, стандартное отклонение и коэффициент вариации последовательных выборок (m_1) , (m_1, m_2) , ..., $(m_1, m_2, ..., m_N)$. Повторим этот процесс для трех случайных переменных X: диаметр образца, прочность на растяжение и предел текучести. Результаты показаны на рис. 2 в виде графика коэффициента вариации V_m против числа выборок. Разница между аналитическими результатами и результатами испытаний также связана с тем, что нам неизвестно истинное значение коэффициента вариации V_X . Вместо него мы подставили значение σ_N / μ_N , рассчитанное с помощью среднего и стандартного отклонения выборки всех значений N для конкретного параметра в таблице 1.

Рис. 2. Коэффициент вариации *V_m* среднего значения как функция числа выборок. Сравнение аналитических результатов с результатами из испытаний.

2. Статистическое определение отдельного свойства

2.1 Основные принципы

В данном разделе приведены выражения для вычисления расчетных значений параметров предела прочности или эксплуатационной надежности конструкции или ее элемента, а также для оценки расчетных значений свойств материалов.

Предполагается, что все переменные подвергаются нормальному или логарифмически нормальному распределению, и что не существует предварительных данных о среднем значении. Рассматриваются два случая в отношении наличия данных о стандартном отклонении, а именно «известное σ_{λ} » и «неизвестное σ_{λ} ». В стандарте EN 1990 [1] предположения о известности σ_{λ} заменяются предположением о известности коэффициента вариации V_{λ} (см. также комментарии в разделе 4.6 Приложения 1 Руководства H1). На практике часто предпочтительнее использовать "не известное V_{λ} " наряду с оценкой V_{λ} с запасом вместо предположения "известного V_{λ} ".

В Европейских нормах проектирования Eurocode 1990 [1] определение характеристического значения X_k или расчетного значения X_d рассматриваемого параметра X (свойство материала, несущая способность или модель) основано на методе прогнозирования квантиль оценки (более подробная информация приведена в разделе 4.3 Приложения 1 Руководства HI). Аналогичные результаты могут быть получены с помощью метода фракционной оценки квантиля с уровнем доверия 0,75. В следующих двух примерах этого метода объясняется.

Пример 3.

При испытании нами были получены значения $x_1, x_2, ..., x_n$ параметра X, который принят как распределенный нормально. Допустим, что стандартное отклонение σ_X из совокупности известно, определим значение k так, чтобы мы имели вероятность γ (уровень доверия), что истинное среднее значение параметра μ_X будет больше, чем среднее значение выборки m_X согласно уравнению:

 $X_k = m_r - k\sigma_r \le \mu_r$ (6)

Другими словами, мы решаем следующее уравнение:

 $P(m_x - k\sigma_x \le \mu_x) - \gamma$ (7)

Как мы показали (см. уравнения (3) и (5)), среднее значение выборки m_x является случайной переменной со средним значением μ_x и стандартным отклонением σ_x / \sqrt{n} . Если мы умножим приведенное выше неравенство на -1, добавим значение m_x и поделим на σ_x / \sqrt{n} , то получим:

$$P((m_x - \mu_x)\sqrt{n} / \sigma_x \le k\sqrt{n} = u_\gamma)\gamma$$
 (8)

где выражение с левой стороны неравенства представляет собой стандартизированную нормальную переменную, а *u*_v представляет собой квантиль стандартизированного нормального распределения, соответствующего вероятности *y*. Следовательно, значение *k* равно:

$$k = u_{\gamma} / \sqrt{n}$$
 (9)

Пример 4.

Мы имеем ту же ситуацию, что в Примере 3, однако теперь стандартное отклонение σ_{χ} неизвестно. Нам необходимо найти такое k, чтобы мы имели вероятность γ , что истинное среднее значение параметра μ_{χ} будет больше, чем среднее значение выборки m_{χ} согласно уравнению:

 $X_k = m_x - ks_x \le \mu_x$ (10)

Мы используем следующую теорему: если все условия соответствуют условиям в Примере 3, и *s*_x представляется собой стандартное отклонение выборки:

$$s_x = \sum (x_i - m_x)^2 / (n - 1)$$
 (11)

тогда случайная переменная

$$(m_x - \mu_x)\sqrt{n} / s_x$$
 (12)

имеет *t*-распределение со степенью свободы *n*-1.

Теперь мы продолжаем решение точно так же, как в Примере 3 и получаем значение k:

$$k = t_{\nu} / \sqrt{n}$$
 (13)

где t_и представляет собой квантиль t-распределения степени n-1, соответствующий вероятности у.

2.2 Оценка через характеристическое значение

При определении расчетного значения X_d параметра X из рассчитываемого характеристического значения X_k, мы используем следующее уравнение в соответствии с Европейскими нормами проектирования Eurocode 1990 [1]:

$$X_d = \eta_d X_k / \gamma_m$$
 (14)

где характеристическое значение X_k получено

$$X_k = m_x (1 - k_n V_x)$$
 (15)

Данное уравнение соответствует уравнению (6) с коэффициентом вариации V_и полученного:

$$V_x = \sigma_x / m_x$$
 (16)

 γ_m представляет собой частный коэффициент для параметра X, и он должен быть заимствован из соответствующих Европейских норм проектирования от EN 1992 до EN 1998. η_d представляет собой расчетное значение коэффициента преобразования. Данный коэффициент охватывает различия между условиями лабораторных испытаний и условиями в течение фактического использования. Значение k_n получено методом прогнозирования оценки квантиля и равно:

$$k_n = -u_p (1/n+1)^{1/2}$$
 (17)

В случае если коэффициент вариации V_X известен, тогда u_ρ берется как квантиль стандартизированного нормального распределения, соответствующий вероятности *p*. Для характеристических значений отдельного свойства вероятность *p*=0,05 используется таким образом, чтобы u_p = - 1.645. В случае если коэффициент вариации V_X неизвестен, то вместо u_ρ используется квантиль t_ρ *t*-распределения со степенью свободы *n*- 1, соответствующий вероятности *p*. Коэффициент k_n зависит от количества выборок *n* и приведен в таблице 2 для двух случаев, «известное V_X » и «не известное V_X » и для вероятности *p*=0,05.
п	1	2	3	4	5	6	8	10	20	30	00
известное V _x	2,31	2,01	1,89	1,83	1,80	1,77	1,74	1,72	1,68	1,67	1,64
неизвестное V _x	-	-	3,37	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64

Таблица 2. Значение *k*_n для пятипроцентного характеристического значения.

Числа в таблице основаны на допущениях «известное σ_x » и «неизвестное σ_x ». В стандарте EN 1990 [1] эти допущения заменены предположением об известности коэффициента вариации V_x . Если стандартное отклонение σ_x известно, тогда V_x должен быть вычислен с помощью уравнения (16). Если σ_x или V_x не известны, тогда V_x вычисляется с помощью стандартного отклонения выборки s_x (уравнение (11)) следующим образом:

$$V_{x} = s_{x} / m_{x}$$
 (18)

В вышеприведенных примерах предполагается, что переменная *X* распределяется нормально. Что если *X* будет распределяться логарифмически нормально?

Когда параметр X распределяется логарифмически нормально, мы используем преобразование In X=Y, чтобы получить переменную Y, которая распределяется нормально с $N(\mu_y, \sigma_y 2)$ (см. также Приложение A к Руководству H1). Отношения между средним значением и вариацией обеих переменных:

$$\mu_{Y} = \frac{\ln(\mu_{x}^{2})}{\sqrt{(\sigma_{x}^{2} + \mu_{x}^{2})}}$$
(19)
$$\sigma_{Y}^{2} = \ln(1 + \sigma_{x}^{2} / \mu_{x}^{2}) = \ln(1 + V_{x}^{2})$$
(20)

Если параметр X распределяется логарифмически нормально, то мы продолжаем вычисление следующим образом. Преобразуем все экспериментальные результаты согласно уравнению:

$$y_i = \ln(x_i)$$
 (21)

и вычисляем среднюю величину выборки *т*_Y из значений *у*_i:

$$m_{y} = \sum(y_{i})/n$$
 (22)

Тогда, если коэффициент вариации V_x известен, мы вычисляем σ_Y согласно уравнению (20), V_Y из уравнения (16), k_n из таблицы 2 и затем вычисляем Y_k из уравнения (15), используя m_Y и V_Y вместо m_x и V_x . Если коэффициент вариации V_x неизвестен, вычисляем вариацию выборки:

$$s_Y^2 = \sum (y_i - m_Y)^2 / n - 1$$
 (23)

 V_Y из уравнения (18), k_n из таблицы 2 и затем мы вычисляем Y_k из уравнения (15), используя m_Y и V_Y вместо m_x и V_x .

Наконец, мы преобразуем вычисленное характеристическое значение $Y_k = m_Y k \sigma_Y$ (или $m_Y k s_Y$) переменной Y в характеристическое значение X_k первоначальной переменной X:

$$X_k = \exp(m_y - k\sigma_y)$$
 (24)

в случае, если V_x известен и

$$X_k = \exp(m_Y - ks_Y)$$
 (25)

в случае, если Vx неизвестен. Тогда расчетная величина Xd вычисляется, используя уравнение (14).

Пример 5.

Возьмем экспериментальные данные из примера 2 и коэффициенты $\gamma_m = 1,1$ и $\eta_d = 0,8$.

Вычислите расчетное значение предела прочности через 5%-ую характеристическую величину из первых 5 экспериментальных значений. Предположите оба случая, $V_x = 0,05$ (известен) и V_x неизвестен. Предположите также оба типа распределения: нормальный и логарифмически нормальный.

Для начала предположим, что предел прочности распределяется нормально. Средняя величина выборки из первых n=5 значений испытаний *m*=942 МПа, и стандартное отклонение выборки *s*=18.59 МПа. Коэффициент вариации – V_x = 18.59/942=0,01973. Для случая «известное V_x » мы получаем из таблицы 2 k_n=1,80, и расчетное значение составляет:

 $\sigma_{m(d)} = 0.8 \times 942 \times (1 - 1.80 \times 0.05) / 1.1 = 623.4 MPa.$

Для случая «неизвестное V_x» мы получаем из таблицы 2 kn=2,33 и расчетное значение:

$$\sigma_{m(d)} = 0.8 \times 942 \times (1 - 2.33 \times 0.01973) / 1.1 = 653.6 MPa.$$

Затем предположим, что предел прочности распределен логарифмически нормально. Преобразуем значения предела прочности, используя уравнение (21) и вычисляем, среднее значение выборки и стандартное отклонение s_{γ} = 0,01967 ln(МПа). Для случая «известное V_{x} » мы получаем:

 $V_{y} = (\ln(1+0.05^{2}))^{1/2}/6.85 = 0.00729$ и $s_{y} - 0.00729 \times 6.85 = 0.04997 \ln(MPa)$

из таблицы 2 kn=1,80, значение Yk = 6,85-1,8

$$Y_{k} = 6,85 - 1,8 \times 0,04997 = 6,76 \ln(MPa)$$

и расчетное значение:

$$\sigma_{m(d)} = 0.8 \times \exp(6.76) / 1.1 = 627.4 MPa.$$

Для случая «неизвестное V_x» мы получаем из таблицы 2 kn=2,33, значение Yk = 6,85-2,33

$$Y_k = 6,85 - 2,33 \times 0,01967 = 6,80 \ln(MPa)$$

и расчетное значение:

$$\sigma_{m(d)} = 0.8 \times \exp(6.80) / 1.1 = 655.7 MPa.$$

Мы видим, что для обоих типов распределения расчетное значение больше для случая «неизвестное V_x » чем для случая «известное V_x ». Причиной является то, что мы приняли намного больший V_x . в случае «известное V_x », что это действительно так и есть. Если бы мы приняли V_x = 0,015, как видно из всех результатов испытаний, тогда бы мы получили:

Нормальное распределение, «известное V_x »:

$$\sigma_{m(d)} = 0.8 \times 942 \times (1 - 1.80 \times 0.015) / 1.1 = 666.6 MPa.$$

Логарифмически нормальное распределение, «известное V_x », s_y =(ln (1+0,015²)) ^{1/2}=0,015

$$Y_k = 6,85 - 1,8 \times 0,015 = 6,82\ln(MPa)$$

 $\sigma_{m(d)} = 0.8 \times \exp(6.82) / 1.1 = 668.2 MPa.$

2.3 Прямая оценка расчетного значения

При определении расчетного значения X_d напрямую, используется следующая формула:

 $X_d = \eta_d m_X (1 - k_{d,n} V_X)$ (26)

В случае если используется данный метод, необходимо учитывать соответствующие предельные состояния и требуемый уровень надежности. Коэффициент преобразования η_d должен охватывать все неопределенности, которые не были включены в испытание. Коэффициент $k_{d,n}$ получен методом прогнозирования оценки квантиля с более низким значением, приблизительно равным 0,1 % (вероятность p=0,001). Когда коэффициент вариации V_x известен, тогда предполагается, что параметр X распределяется нормально и $k_{d,n}$ имеет следующее значение:

$$k_{d,n} - u_p (1/n+1)^{1/2}$$
 (27)

с квантилем 0,001 стандартизированного нормального распределения u_p = -3,09 (значение -3,04 используется в Европейских нормах проектирования Eurocode 1990 [1]). Когда коэффициент вариации V_x неизвестен, тогда квантиль t_p *t*-распределения со степенью свободы *n*-1, соответствующей вероятности *p*=0,001, используется вместо u_p . Коэффициент $k_{d,p}$ зависит от количества выборок *n* и представлен в таблице 3:

п	1	2	3	4	5	6	8	10	20	30	00
<i>V_x</i> известен	4,36	3,77	3,56	3,44	3,37	3,33	3,27	3,23	3,16	3,13	3,04
<i>V_x</i> не известен	-	-	-	11,40	7,85	6,36	5,07	4,51	3,64	3,44	3,04

Таблица 3. Значения <i>k_d</i>	_{'d,n} для прямой оценки	расчетного значения
--	-----------------------------------	---------------------

Пример 6.

Используя данные из примера 5, вычислить расчетное значение предела прочности, используя прямой метод.

Во-первых, предположим, что предел прочности имеет нормальное распределение. Для случая « V_x известен» (V_x =0,015) подставляем из таблицы 3 значение $k_{d,n}$ =3,37, и расчетное значение составляет:

 $\sigma_{m(d)} = 0.8 \times 942 \times (1 - 3.37 \times 0.015) = 715.5 MPa$.

Для случая «неизвестное V_x » подставляем из таблицы 2 значение k_n =7,85 и расчетное значение составляет:

$$\sigma_{m(d)} = 0.8 \times 942 \times (1 - 7.85 \times 0.01973) = 636.9 MPa$$

Когда предполагается логарифмически нормальное распределение для случая «*V_x*. известен» (*V_x*.=0,015), получаем:

$$Y_k = 6,85 - 3,37 \times 0,015 = 6,80 \ln(M\Pi a)$$

 $\sigma_{m(d)} = 0.8 \times \exp(6.80) = 717.9 M\Pi a$.

И для случая «неизвестное V_x»

$$Y_{k} = 6,85 - 7,85 \times 0,01967 = 6,70 \ln(M\Pi a)$$

 $\sigma_{m(d)} = 0.8 \times \exp(6.70) = 647.1 M\Pi a$.

Мы получили более высокие значения с прямым методом вычисления. Потому что мы использовали тот же самый конверсионный коэффициент η_d в обоих случаях.

2.4 Приближение коэффициентов k_n и k_{d,n}

Коэффициенты k_n и k_d могут быть вычислены с помощью интерполяции значений в таблицах 2 и 3 или, иначе, с помощью функций приближения:

 $k_n = 1,655 + 0,672/n$,

p=0,05, «*V*_x известен»

 $k_n = n/(-0.950 + 0.614 \times n)$

p=0,05, «*V*_x не известен»

 $k_n = 3,099 + 1,294 / n_1$

p=0,001, «*V*_x известен»

 $k_n = n/(-0.986 + 0.323 \times n)$

p=0,001, «*V_x* не известен»

На рис. 3 представлено, как данные формулы дают приближенные данные из таблиц 2 и 3. Погрешность при использовании данных формул, как правило, составляет менее 1%.

Рис. 3. Функции приближения для коэффициентов k_n и $k_{d,n}$.

3. Статистическое определение моделей несущей способности

Процедуры, представленные в данном разделе предназначены для калибровки моделей несущей способности и для получения расчетных значений из испытаний, предпринятых для снижения уровня неопределенностей в параметрах моделей несущей способности.

Расчетная модель несущей способности разрабатывается на основе наблюдений и теоретических соображений. Статистическая интерпретация результатов испытаний должна в дальнейшем использоваться для валидации и приспособления модели, до тех пор, пока не будет достигнуто достаточное соответствие между испытаниями и теоретическими данными. Как в предыдущем разделе рассматриваются два метода: (а) путем оценки характеристического значения несущей способности и (b) путем прямой оценки расчетного значения несущей способности. Начнем с метода (a).

Делаются следующие допущения: функция несущей способности представляет собой функцию статистически независимых переменных **X**=(X₁,..,X_j), которые распределяются нормально или логарифмически нормально; проведено достаточное количество испытаний; все соответствующие данные по материалам и геометрические данные измерены.

Первый шаг заключается в том, чтобы разработать расчетную модель для теоретической несущей способности *r*_t:

$$r_t = g_{rt}(X)$$
 (28)

Модель должна включать все соответствующие основные переменные X_j , которые воздействуют на несущую способность. Затем мы сопоставляем теоретическую модель с результатами испытаний. Теоретические значения r_{ti} рассчитываются путем подстановки фактически измеренных свойств выборки *i* в теоретической модели, которая должна сравниваться со значениями несущей способности r_{ei} . Построим точки (r_{ti} , r_{ei}) на двухмерном графике: r_{ti} — на оси абсцисс, r_{ei} — на оси ординат, согласно рис. 4. Если теоретическая модель является точной, то все точки должны располагаться на диагонали первого квадранта. В реальных ситуациях всегда будет присутствовать небольшой разброс, однако если происходит значительное отклонение от данной линии, то необходимо проведение дальнейшего исследования процедур испытаний и теоретических моделей.

Рис. 4. График сравнения экспериментальной и теоретической несущей способности.

Затем представим вероятностную модель несущей способности:

$$r_p = bg_{rt}(X)\delta$$
 (29)

где *b* представляет собой наклон наиболее точно соответствующей линии наименьших квадратов, полученный с помощью:

$$b = \sum (r_e r_t) / \sum (r_t^2)$$
 (30)

 δ — остаточный член, который представляет неопределенность модели:

 $\delta = r_e / r_p$ (31)

В отсутствие других данных, предполагается, что $\delta > 0$ и распределяется логарифмически нормально. Из этого следует, что $\Delta = \ln(\delta)$ распределяется логарифмически нормально. Для каждого экспериментального значения / вычисляем:

$$\delta_i = r_{ei}/(br_{ti})$$
 (32)

и

$$\Delta_i = \ln(\delta_i)$$
 (33)

Расчетное среднее значение $\overline{\Delta}$ и вариация S_{Δ} для Δ равны:

$$\overline{\Delta} = \sum (\Delta_i) / n$$
 (34)

$$S_{\Delta}^{2} = \sum (\Delta_{i-}\overline{\Delta})^{2} / (n-1)$$
 (35)

Для расчетного значения коэффициента вариации может использоваться значение:

$$V_{\delta} = \sqrt{\exp(S_{\Delta}^{2}) - 1}$$
 (36)

(полученное из уравнения (20)).

Далее необходимо определить коэффициенты вариации V_{χ_i} основных переменных. Они могут быть получены из данных испытаний, если есть возможность продемонстрировать, что испытания являются в полной мере показательными для фактической совокупности. Поскольку, как правило, это не так, коэффициенты вариации V_{χ_i} должны быть определены на основе предварительных знаний или допущений.

Коэффициент вариации *V*, функции несущей способности далее рассчитывается следующим образом. Если функция несущей способности является произведением основных переменных *X*_i,

$$X = X_1 \times X_2 \times X_3 \times \ldots \times X_1$$
 (37)

которые рассматриваются как независимые и распределяются нормально, то, используя логарифм приведенного выше выражения

$$\ln(X) = \ln(X_1) + \ln(X_2) + \ln(X_3) + \dots + \ln(X_j)$$
(38),

получаем сумму логарифмически нормально распределенных переменных. Вариация суммы независимых переменных составляет (см. уравнение (2)):

$$\sigma_{\ln(X)}^{2} = \sum \sigma_{\ln(Xi)}^{2} = \sum (\ln(1 + V_{Xi}^{2}))$$
 (39)

где мы использовали уравнение (20). Применив антилогарифм, получаем:

$$1 + V_{rt}^{2} = \exp(\sigma_{\ln(X)}^{2}) = (1 + V_{X1}^{2})(1 + V_{X2}^{2})...(1 + V_{Xj}^{2})$$
(40)

При малых значениях Их, вышеприведенное уравнение может быть упрощено до следующего уравнения:

$$V_{rt}^{2} = \sum (V_{Xi}^{2})$$
 (41)

Если функция несущей способности является более сложной функцией, таким образом, что она не может быть выражена как произведение основных переменных, то *V*_{rt} рассчитывается с помощью уравнения:

$$V_{rt}^{2} = D[g_{rt}(X)] / g_{rt}^{2}(X_{m}) = \frac{1}{g_{rt}^{2}(X_{m})} \sum (\frac{\partial g_{rt}}{\partial X_{i}} \sigma_{i})^{2}$$
(42)

где Х_т являются средними значениями основных переменных.

Коэффициент вариации V, функции несущей способности далее рассчитывается следующим образом:

$$V_r^2 = (1 + V_{\delta}^2)(1 + V_{rt}^2) - 1$$
 (43)

стандартные отклонения

$$Q_{rt} = \sigma_{\ln(X)} = \sqrt{\ln(1 + V_{rt}^2)}$$
(44)
$$Q_{\delta} = \sigma_{\ln(\delta)} = \sqrt{\ln(1 + V_{\delta}^2)}$$
(45)

$$Q = \sigma_{\ln(r)} = \sqrt{\ln(1 + V_r^2)}$$
 (46)

и весовые коэффициенты

$$\alpha_{rt} = Q_{rt} / Q$$
 (47)
$$\alpha_{\delta} = Q_{\delta} / Q$$
 (48)

Среднее значение функции несущей способности рассчитывается из теоретической модели, используя средние значения *X_m* основных переменных:

$$r_m = bg_{rt}(X_m)$$
 (49)

Наконец, характеристическое значение несущей способности рассчитывается из следующего уравнения (получение данного уравнения дано в приложении А):

$$r_k = r_m \exp(-k_\infty \alpha_{rt} Q_{rt} - k_n \alpha_\delta Q_\delta - 0.5 Q^2)$$
 (50)

Коэффициент k_n взят из таблицы 2 для случая «неизвестное V_x », а k_{∞} представляет собой значение k_n для больших значений n (k_{∞} =1,64). Когда только одна переменная представлена в модели несущей способности, только выражение – $k_n \alpha_{\delta} Q_{\delta}$ из уравнения (50) принимается во внимание.

Когда расчетное значение несущей способности оценивается напрямую, а не из характеристического значения несущей способности, то процедура остается такой же с единственным изменением, что значения k_{∞} и k_n заменяются значениями $k_{\infty,d}$ и $k_{d,n}$, взятыми из таблицы 3 для случая «неизвестное V_x ».

Пример 7.

Рассмотрим модель несущей способности в форме $F = A \times \sigma_m / 1000$. В качестве основных переменных возьмем сечение бруса A и предел прочности σ_m . Пусть среднее значение и коэффициент вариации основ-

ных переменных составляет E(A)=269,76 мм², V(A)=0,00295, $E(\sigma_m)$ =936,5 МПа, $V(\sigma_m)$ =0,01509. Теоретические данные $F_{\rm e}$ и экспериментальные данные $F_{\rm e}$ для различных значений основных переменных даны в таблице 4. Необходимо рассчитать характеристическое значение несущей способности средних значений основных переменных.

n	Ft	Fe	n	<i>F</i> t	F _e	n	<i>F</i> t	Fe
1	214,9	215,9	7	243,6	245,2	13	269,3	270,8
2	219,9	222,4	8	248,1	253,2	14	273,4	274,2
3	224,9	224,7	9	252,5	261,3	15	277,4	279,6
4	229,7	228,5	10	256,8	260,1	16	281,3	281,7
5	234,4	228	11	261	256,5	17	285,2	282,9
6	239,1	239,7	12	265,2	261.7	18	289	278,7

Таблица 4. Теоретические данные *F*_t и экспериментальные данные *F*_e несущей способности в [кН].

В графике на рис. 5 показаны данные из таблицы 4 с линией регрессии $F_t = b \times F_e$. Значение *b* получено из уравнения (30): *b*=0.9995.

Рис. 5. Сравнение экспериментальной *F*е и теоретической *F*е несущей способности.

Среднее и стандартное выборочное отклонение логарифма остаточного члена δ даны значениями $\overline{\Delta} = 0,000567, \ s_{\Delta}^{2} = 0,000277,$ коэффициенты вариации рассчитываются с помощью уравнений (36), (40) и (43) и равны: $V_{\delta}^{2} = 0,000277, \ V_{rt}^{2} = 0,000236, \ V_{r}^{2} = 0,000513$. Коэффициент $k_{n} = 1.78054$ получен с помощью приближенной формулы. Теоретическое значение функции несущей способности средних значений основных переменных равно $r_{\rm m} = 252,5$ kN. Наконец, характеристическое значение несущей способности рассчитывается:

$$r_{\rm k} = 252,5 \times \exp(-1,64 \times 0,6785 \times 0,01537 - 1,7805 \times 0,7346 \times 0,0166 - 0,5 \times 0.0226^2) = 242,8 \,\rm kN$$

Мы повторно провели представленную выше процедуру для 10-ти значений V(A) и $V(\sigma_m)$ с одинаковыми промежутками в диапазоне от 0 до 0,4. На рис. 6 показана зависимость характеристического значения несущей способности обоих коэффициентов вариации.

Рис. 6. Характеристическое значение несущей способности для различных коэффициентов вариации основных переменных **A** и σ_m .

Если расчетное значение рассчитывается напрямую, то, согласно приближенной формуле, $k_{\infty,d}$ = 3,04 и $k_{n,d}$ = 3,7223, и расчетное значение составляет:

$$r_{\rm d} = 252,5 \times \exp(-3,04 \times 0,6785 \times 0,01537 - 3,7223 \times 0,7346 \times 0,0166 - 0,5 \times 0.0226^2) = 233,7 \,\mathrm{kN}$$

Частный коэффициент γ_m для несущей способности модели, в таком случае, составит:

$$\gamma_m = r_m / r_d = 242,8/233,7 = 1,039$$
 (51)

В данных приложениях приведены два программных продукта для вычисления характеристического значения несущей способности, расчетной несущей способности и частных коэффициентов. Эти продукты включают следующие:

1. Приложенная рабочая книга в формате Excel, «**dast.xis**», может использоваться для расчета значений r_{kr} , r_d и γ_m для различных теоретических и экспериментальных данных. Пользователь вносит в желтые поля ввода теоретические и экспериментальные значения несущей способности, средние значения и коэффициенты вариации основных переменных и средние значения несущей способности. В рабочем листе автоматически рассчитываются характеристические и расчетные значения несущей способности и значения частного коэффициента (показанные в голубом поле), и данные выводятся в таблицу.

Компьютерная программа «dast.exe» может использоваться для создания таблиц значений этих величин с помощью различных значений показателей вариации основных переменных. Исходный файл «dast.c» данной компьютерной программы также прилагается и может использоваться для создания «dast.exe», если составление проводится с помощью компилятора С или C++.

Программа «**dast.exe**» работает только в командном режиме, то есть пользователь должен переходить в командный режим (MSDos или Командная Строка в системе «Windows»), чтобы использовать данную программу. Программа читает входные данные из входного файла, предоставляемого пользователем (программные и входные файлы должны находиться в одном и том же текущем справочнике). Формат данного входного файла следующий: в первой строке вводится слово: 'resistance' (несущая способность). Следующие строки содержат значения теоретических и экспериментальных значений несущей способность). Следующие строки содержат значения теоретических и экспериментальных значений несущей способности, по два числа в каждой строке. Затем вводится слово 'variations' (вариации), за которым следуют значения коэффициентов вариации V_{χ} для каждой основной переменной, одно число в каждой строке. Если пользователь запрашивает значения r_{k} , r_{d} и γ_{m} только для входных значений V_{χ} , тогда входной файл завершается словом 'end' (конец). Если пользователь запрашивает значения r_{k} , r_{d} и γ_{m} для ряда коэффициентов вариаций V_{x} тогда вводится слово 'calculate' (рассчитать), за которым должна следовать строка 'characteristic' (характеристическое значе-

ние), 'design' (расчетное значение) или 'partial' (частный коэффициент), соответственно. Далее вводится слово 'table' (таблица), за которым следует строка, содержащая восемь чисел. Данные числа обозначают показатели двух (произвольно выбранных) основных переменных, минимальное и максимальное значения коэффициента вариации для первой основной переменной, минимальное и максимальное значения коэффициента вариации для второй основной переменной и число табличных значений для первой и второй основной переменной. Ввод завершается словом 'end' (конец). Строки комментариев, начинающиеся с точки с запятой, не учитываются. Более подробно формат ввода также указан в исходном файле «**dast.c**».

Пример использования представлен с помощью двух вводных файлов, **«dast.i1»** и **«dast.i2»**, содержащих данные из примера **7**. Выходные файлы **«dast.o1»** и **«dast.o2»**, созданные с помощью команд в командном режиме **'dast dast.i1** > **dast.o1'** и **'dast dast.i2** > **dast.o2**' также даны в приложении. Как показано в приложении, второй файл **«dast.o2»** может использоваться напрямую в формате Excel для создания трехмерной таблицы рассчитанной величины в зависимости от индексов вариации двух (произвольно выбранных) основных переменных.

Список литературы

[1] EN 1990 Eurocode - Basis of structural design. CEN 2002.

- [2] ISO 2394 General principles on reliability for structures, ISO 1998.
- [3] ISO 12491:1997(E): Statistical methods for quality control of building materials and components, ISO 1997.
- [4] JCSS: Probabilistic model code. JCSS working materials, http://www.jcss.ethz.ch/, 2000

[5] Kreyszig, E.: Advanced Engineering Mathematics, John Wiley & sons, New York, Chichester, Brisbane, Toronto, Singapore, 1993.

Приложение А. Получение уравнения (50)

Пусть X распределяется нормально. Тогда распределение $\ln(X)$ является нормальным со средним значением $\mu_{\ln X} = \mu(\ln X)$ и стандартным отклонением $\sigma_{\ln X}$.

$$\ln(X)_{k} = \mu_{\ln X} - k_{n}\sigma_{\ln X}$$
 (А.1) или

$$X_{k} = \exp(\mu_{\ln X} - k_{n}\sigma_{\ln X})$$
 (A.2)

Поскольку среднее значение $\mu(X)$ параметра X может быть выражено с помощью среднего значения $\mu_{\ln X}$ и стандартного отклонения $\sigma_{\ln X}$ логарифма ln(X) следующим соотношением:

$$\mu(X) = \exp(\mu_{\ln X} + \sigma_{\ln X}^2/2)$$
 (A.3)

отсюда мы получаем:

$$X_{k} = \mu(X) \exp(-k_{n} - \sigma_{\ln X}^{2}/2)$$
 (A.4)

Если *X*= *Y Z* является произведением двух факторов, *Y* и *Z*, тогда:

$$\ln(X) = \ln(Y) + \ln(Z)$$
 (A.5)

и среднее значение ln(X) составляет:

$$\mu_{\ln X} = \mu(\ln(Y)) + \mu(\ln(Z))$$
 (A.6)

Стандартное отклонение $\sigma_{\ln X}$ логарифма ln(X) может быть выражено с помощью форм-факторов α_Y и α_Z следующим образом:

$$\sigma_{\ln X} = \alpha_Y \sigma_{\ln Y} + \alpha_Z \sigma_{\ln Z})$$
 (A.7)

Если совместить уравнения (А.7) и (А.4), тогда характеристическое значение X как комбинация Y и Z составит:

$$X_{k} = \mu(X) \exp(-k_{n}\alpha_{Y}\sigma_{\ln Y} - k_{n}\alpha_{Z}\sigma_{\ln Z} - \sigma_{\ln X}^{2}/2)$$
 (A.8)

Если рассматривать функцию несущей способности *r* как переменную *X*, теоретическую функцию несущей способности *r*_t как переменную *Y*, а остаточный член как переменную *Z* в вышеприведенном уравнении, то переписать уравнение можно как (A.8) с обозначением из раздела 3:

 $r_{k} = r_{m} \exp(-k_{n} \alpha_{rr} Q_{rr} - k_{n} \alpha_{\delta} Q_{\delta} - Q^{2}/2)$ (A.9)

Наконец, поскольку мы предполагаем, что статистическая неопределенность отсутствует для теоретической функции несущей способности r_t в отношении количества выборок *n*, мы можем подставить k_{∞} вместо k_n , и получим уравнение (50).

Приложения

ATTACHMENTS

- 1. EXCEL worksheet from the workbook "dast.xls"
- 2. Source file "dast.c" to the program "dast.exe"
- 3. Input file "dast.i1" for the program "dast.exe"
- 4. Output file "dast.o1" produced by "dast.exe" from "dast.o1"
- 5. Input file "dast.i2" for the program "dast.exe"
- 6. Output file "dast.o2" produced by "dast.exe" from "dast.o2"
- 7. EXCEL chart showing the data from dast.o2

ГЛАВА V. ОЦЕНКА СУЩЕСТВУЮЩИХ КОНСТРУКЦИЙ

Милан Холики ¹

¹ Институт Клокнера, Чешский технический университет, Прага, Чехия

Краткая информация

Подход к оценке существующих конструкций во многом отличается от подхода, применяемого при проектировании конструкции нового здания. Необходимо учитывать влияние строительного процесса и последующей эксплуатации конструкции, в ходе которых конструкция может подвергаться перестройке, износу, неправильной эксплуатации и другим изменениям первоначального (запроектированного) состояния. Для оценки существующих конструкций основные принципы и правила Еврокода EN 1990 «Основы проектирования конструкций» необходимо дополнять специальными процедурами, представленными в международных стандартах ISO.

1. Введение

1.1 Справочные материалы

Справочные материалы, относящиеся к оценке существующих конструкций, ограничиваются рядом национальных норм и тремя международными стандартами ISO 2394 [1], ISO 13822 [2] и ISO 12491 [3]. Основные принципы и правила Еврокода EN 1990 «Основы проектирования конструкций» необходимо дополнять специальными процедурами, представленными в вышеупомянутых международных стандартах ISO [1,2,3], которые преимущественно использованы в данной работе. Дополнительная информация об оценке существующих конструкций представлена в научных работах и публикациях, например, в публикациях [5], [6] и [7].

1.2 Основные принципы

Оценка существующих конструкций становится все более и более важной, и часто встречающейся инженерной задачей. Непрерывное использование существующих конструкций имеет большое значение по экологическим, экономическим и социально-политическим причинам, и с каждым годом возрастает. Данные аспекты особенно значимы для зданий, которые имеют важное социальное и экономическое значение.

Основные принципы устойчивого развития регулярно приводят к необходимости увеличения срока службы конструкций, что в большинстве практических примеров связано с жесткими экономическими ограничениями. Поэтому оценка существующих конструкций часто требует применения сложных методов, как правило, выходящих за рамки традиционных норм проектирования.

Подход к оценке существующих конструкций во многом отличается от подхода, применяемого при проектировании конструкции нового здания. Необходимо учитывать влияние строительного процесса и последующей эксплуатации конструкции, в ходе которых она может подвергаться перестройке, износу, неправильной эксплуатации и другим изменениям первоначального (запроектированного) состояния. Однако, несмотря на то, что существующее здание может быть неоднократно обследовано, неопределенность в поведении основных переменных всегда остается. Поэтому, аналогично тому, как это делается при проектировании новых конструкций, фактические вариации в основных переменных, характеризующих воздействия, свойства материалов, геометрические параметры и неопределенности модели, следует учитывать с помощью частных коэффициентов или других положений норм.

2. Общая схема оценки

2.1 Причины оценки

Как правило, проведение оценки фактической надежности существующей конструкции может потребоваться в следующих случаях:

- реконструкция существующего построенного сооружения, в ходе которой в существующую несущую систему добавляются новые конструктивные элементы;
- проверка пригодности с целью определения, способна ли существующая конструкция выдерживать нагрузки, связанные с ожидаемым изменением режима эксплуатации сооружения, изменением условий эксплуатации или увеличением его расчетного срока службы;
- ремонт существующей конструкции, которая подверглась износу вследствие зависящего от времени воздействия окружающей среды, или подверглась разрушению в ходе чрезвычайных воздействий, например, землетрясения;
- возникновение сомнений в фактической надежности конструкции.

В некоторых случаях проведение оценки могут потребовать надзорные органы, страховые компании, владельцы зданий, или оценка необходима в соответствии с планом технического обслуживания.

2.2 Общие правила

Обычно при оценке существующих конструкций применяются следующие два общих правила:

Необходимо применять действующие в настоящее время нормы для проверки конструктивной надежности, а использование старых норм, действительных на момент проектирования конструкции, носит исключительно рекомендательный характер.

Необходимо рассматривать фактические характеристики материалов конструкции, воздействия, геометрические параметры и поведение конструкции, а использование исходной проектной документации носит исключительно рекомендательный характер.

Первое правило следует применять с целью достижения аналогичного уровня надежности, как в случае с новыми спроектированными конструкциями. Согласно второму правилу, не следует допускать небрежности в оценке состояния конструкции, так как это может оказать (благоприятное или неблагоприятное) воздействие на фактическую надежность данной конструкции.

Большая часть действующих в настоящее время норм разрабатывается с применением понятия предельных состояний в сочетании с методом частных коэффициентов. В соответствии с данным методом, который подробно рассматривается в этой работе, основные переменные определяются характеристическими или репрезентативными значениями. Расчетные значения основных переменных определяются на основе характеристических (репрезентативных) значений и соответствующих частных коэффициентов.

Из второго правила следует, что визуальный осмотр оцениваемой конструкции необходимо проводить во всех возможных случаях. Практический опыт показывает, что осмотр строительной площадки также способствует оценке реальной ситуации и состояния конструкции.

Как правило, проведение оценки не требуется для тех элементов существующей конструкции, которые не подвергаются конструктивным изменениям, реконструкции, ремонту, изменению режима эксплуатации, или которые не получили очевидных повреждений, а также при отсутствии оснований полагать, что конструкция недостаточно надежна.

2.3 Основной процесс

В основном, процесс оценки состоит из следующих этапов (см. схему в приложении А к данной главе):

- определение задач оценки, требуемых заказчиком или надзорными органами;
- сценарии, связанные с конструктивными условиями или воздействиями;
- предварительная оценка;
- изучение имеющейся документации;
- предварительный осмотр;
- предварительные проверки;
- решение о принятии срочных мер;
- рекомендации по подробной оценке;
- подробная оценка;
- тщательное изучение документации;
- тщательный осмотр;
- испытание материалов и определение воздействий;
- определение конструктивных свойств;
- оценка конструктивной надежности;
- проверка конструктивной надежности;
- формирование отчета, включая предложения о дальнейших действиях с сооружением;
- при необходимости повторить последовательность.

Если в результате предварительной оценки установлено, что конструкция является надежной для ее предполагаемой эксплуатации в течение остаточного срока службы, проведение подробной оценки не требуется. И наоборот, если есть основания полагать, что конструкция представляет опасность или находится в ненадежном состоянии, требуется принять срочные меры и провести подробную оценку.

3. Обследование

3.1 Цели

Целью обследования существующей конструкции является проверка и обновление данных о текущем положении (состоянии) конструкции с учетом ряда аспектов. Часто первое впечатление о состоянии конструкции будет основано на визуальном качественном обследовании. Описание возможного повреждения конструкции может быть представлено в устной форме с использованием следующих терминов: «неизвестно», «отсутствует», «незначительное», «среднее», «значительное», «разрушительное». Зачастую, решение на основе данных наблюдений принимается экспертами исключительно интуитивным образом.

Более детальная оценка состояния конструкции может быть произведена на основе (последующих) количественных проверок. Обычно оценка существующих конструкций представляет собой цикличный процесс, когда первая проверка сопровождается последующими обследованиями. Целью проведения последующих обследований является необходимость более тщательной оценки состояния конструкции (в особенности в случае разрушения), а также проверка информации, необходимой для определения характеристических и репрезентативных значений основных переменных. Для всех методов проверки следует предоставлять информацию о вероятности обнаружения повреждений, если таковые имеются, и о точности результатов.

3.2 Отчет

Результаты обследования необходимо включать в отчет, который, как правило, содержит следующую информацию:

- реальное состояние конструкции;
- виды материалов конструкции и тип почвы;
- выявленные повреждения;
- воздействия, включая влияние окружающей среды;
- имеющаяся проектная документация.

Максимальное нагружение представляет собой особый вид обследования. На основе данных испытаний можно сделать выводы с учетом следующего:

- несущей способности испытываемого элемента в режиме контрольной нагрузки;
- других элементов;
- других условий нагрузки;
- поведения системы.

Сделать вывод по первому пункту не представляет сложности – функция плотности распределения вероятности несущей способности просто останавливается на значении максимальной нагрузки. Сделать вывод по другим пунктам сложнее. Необходимо заметить, что количество испытаний с максимальной нагрузкой не должно ограничиваться одним. Контрольное испытание может проводиться на одном элементе при разных условиях нагружения и/или на образце конструктивных элементов. Во избежание нежелательного повреждения конструкции вследствие максимальной нагрузки, рекомендуется увеличивать нагрузку постепенно и измерять деформации. Результаты измерений также способствуют большему пониманию поведения системы. В основном, при испытаниях на максимальную нагрузку редко учитываются долговременные или зависящие от времени воздействия. Данные воздействия должны компенсироваться расчетами.

4. Основные переменные

4.1 Основные положения

В соответствии с вышеупомянутыми основными принципами и правилами, характеристические и репрезентативные значения всех основных переменных определяются с учетом реальной ситуации и состояния конструкции. Применение имеющейся проектной документации носит исключительно рекомендательный характер. Реальное состояние конструкции должно проверяться путем проведения осмотров в разумных количествах. При необходимости следует провести испытания с разрушением или без разрушения образца, с последующей оценкой результатов при помощи статистических методов.

4.2 Характеристические значения

Для проверки конструктивной надежности с использованием метода частных коэффициентов характеристические и репрезентативные значения основных переменных следует рассматривать следующим образом:

a) Размеры элементов конструкции должны определяться на основе соответствующих измерений. Однако, если имеется исходная проектная документация и размеры не менялись, в расчетах могут быть использованы номинальные размеры, указанные в документации.

б) Нагрузочные характеристики следует представлять со значениями, отражающими реальную ситуацию, проверенную путем проведения испытаний с разрушением или без разрушения образца. Если какие-либо нагрузки были уменьшены или полностью удалены, репрезентативные значения также следует уменьшить или скорректировать соответствующие частные коэффициенты. Если ранее наблюдалось чрезмерное нагружение, необходимо соответствующим образом увеличить репрезентативные значения.

в) Свойства материалов следует рассматривать в соответствии с реальным состоянием конструкции, проверенным путем проведения испытаний с разрушением или без разрушения образца. При наличии исходной проектной документации и отсутствии значительного износа с возможными присутствующими ошибками проектирования или ошибками монтажа, могут быть использованы характеристические значения, представленные в исходном проекте.

г) Неопределенности модели следует рассматривать так же, как и на стадии проектирования, за исключением случаев, когда более раннее поведение конструкции (в особенности разрушение) диктует обратное. В некоторых случаях параметры модели, коэффициенты и другие расчетные допущения можно определить, исходя из результатов измерений существующей конструкции (например, коэффициент ветровой нагрузки, значения расчетной ширины и т.д.).

Проверка надежности существующей конструкции должна быть основана на проведении осмотра сооружения, включая сбор соответствующих данных. Одним из наиболее важных этапов при оценке надежности является оценка исходных данных, и их уточнение с использованием новых полученных результатов измерений.

5. Анализ результатов проверки

5.1 Обновление данных

Показатели свойств и надежности могут быть обновлены с использованием результатов проверки (качественной проверки, расчетов, количественной проверки, максимального нагружения). Выделяются две разных процедуры:

1) перерасчет вероятности разрушения конструкции.

2) перерасчет распределений вероятностей основных переменных.

Прямое обновление параметров конструктивной надежности (процедура (1)) формально можно произвести, используя следующую основную формулу теории вероятности:

$$P(F|I) = \frac{P(F \cap I)}{P(I)}$$
(1)

где Р обозначает вероятность, *F* – локальное или общее разрушение, *I* – информацию проверки, и ∩ – область пересечения двух событий. Информация проверки *I* может состоять из наблюдения того, что ширина трещины на балке В меньше, чем ширина трещины на балке А. Пример уточнения вероятностей с использованием уравнения (1) приведен в приложении В к данной главе.

5.2 Перерасчет распределения вероятностей

Процедура перерасчета одномерного или многомерного распределения вероятностей (процедура (2)) формально имеет следующий вид:

$$f_{X}(x|I) = CP(I|x)f_{X}(x)$$
(2)

где $f_x(x|I)$ обозначает уточненную функцию плотности распределения вероятностей X, $f_x(x)$ обозначает функцию плотности распределения вероятностей X до перерасчета, X – основную переменную или статистический параметр, I – информацию проверки, C – нормирующую постоянную, а P(I|x) – функцию правдоподобия. На рис. 1 представлено пояснение к уравнению (2).

для ожидаемой переменной $\,X\,.\,$

В примере, представленном на рис. 1, перерасчет приводит к более благоприятному распределению с большим расчетным значением x_d , чем исходное расчетное значение x_d . Тем не менее, в основном, уточненное распределение также может быть менее благоприятным, чем априорное распределение.

5.3 Перерасчет вероятности разрушения

Как только установлены уточненные распределения для основных переменных $f_X(x)$, уточненную вероятность разрушения P(F|I) (процедура (1)) можно определить при помощи вероятностного анализа с применением стандартного метода конструктивной надежности для новых конструкций. В виде формулы это может быть представлено следующим образом:

$$\mathbf{P}(F|I) = \int_{g(x<0)} f_{X}(x|I) \mathrm{d}x$$
 (3)

где $f_X(x|I)$ обозначает уточненную функцию плотности распределения вероятностей, а g(x) < 0 – область разрушения (где g(x) – это функция предельного состояния). Необходимо доказать, что вероятность P(F|I), представленная расчетными значениями для ее основных переменных, не превышает указанное расчетное значение.

5.4 Уточнение характеристических и расчетных значений

Процедура перерасчета (2) может использоваться для получения уточненных характеристических и репрезентативных значений (квантилей соответствующих распределений) основных переменных для применения в методе частных коэффициентов. Байесовский метод перерасчета квантилей описывается в приложении С к данной главе. Более подробная информация о перерасчете представлена в стандарте ISO 12491 [3].

Более практичным методом является прямое определение уточненных расчетных значений для каждой основной переменной. Для параметра несущей способности X расчетное значение можно получить, используя действующую формулу из стандарта ISO 2394 [1]. Для расчета нормальной и логарифмически нормальной случайной переменной используется следующая формула:

$$x_{\rm d} = \mu(1 - \alpha\beta V)$$
 (4)

$$x_{\rm d} = \mu \exp(-\alpha\beta\sigma - 0.5\sigma^2)$$
 (5)

где $x_{\rm d}$ – уточненное расчетное значение для X, μ – уточненное среднее значение, α – вероятностный коэффициент влияния, β – расчетный индекс надежности, V – уточненный коэффициент вариации, а $\sigma^2 = \ln(1 + V^2)$.

Значение расчетного индекса надежности β обсуждается в стандарте ISO/CD 13822 [2], значения α можно принять равными значениям, обычно используемым для новых конструкций (0,7 – для доминирующего параметра нагрузки, 0,8 – для доминирующего параметра несущей способности и 0,3 – для не доминирующих переменных, в соответствии со стандартом ISO 2394 [1]).

И наоборот, можно сначала определить характеристическое значение x_k , а затем вычислить расчетное значение x_d с помощью соответствующего частного коэффициента γ_m :

$$x_{\rm d} = x_{\rm k} / \gamma_{\rm m}$$
 (6)

Тогда для нормальной и логарифмически нормальной случайной переменной X характеристическое значение x_k рассчитывается следующим образом:

$$x_{k} = \mu(1 - kV)$$
 (7)
$$x_{k} = \mu \exp(-k\sigma_{k} - 0.5\sigma^{2})$$
 (8)

$$x_{\rm k} = \mu \exp(-k\sigma - 0.5\sigma^2)$$
 (8)

где обычно используется k = 1,64 (5% квантиль стандартизированного нормального распределения). Рекомендуется рассмотреть оба метода, а затем использовать результат с наибольшим запасом.

Данная процедура может применяться ко всем основным переменным. Однако для геомеханических свойств и переменных нагрузок более подходящими могут быть другие распределения, помимо нормального и логарифмически нормального распределения.

Необходимо заметить, что более низкий допустимый уровень надежности может быть установлен путем уменьшения значений β для вероятностного метода расчета, и уменьшения значений γ в методе частных коэффициентов. Для свойства материала X, описываемого нормальным распределением, частный коэффициент $\gamma_{\rm m}$ можно вычислить с помощью следующего уравнения:

$$\gamma_{\rm m} = \frac{x_{\rm k}}{x_{\rm d}} = \frac{\mu - k\sigma}{\mu - \alpha\beta\sigma} \tag{9}$$

которое следует из соотношения общего вида (6). Все обозначения, используемые в уравнении (9), установлены выше (k = 1,64 обычно используется для нормативного сопротивления). Аналогичные соотношения между γ_m и β можно вывести для логарифмически нормального распределения или других распределений.

6. Оценка конструктивной надежности

Поведение конструкций должно быть оценено с помощью моделей, которые описывают реальную ситуацию и состояния существующей конструкции. В основном, конструкцию следует оценивать на критическое предельное состояние и предельное состояние эксплуатационной пригодности с использованием основных переменных, а также с учетом свойственного процесса износа.

Все основные переменные, характеризующие воздействия, нагрузку и неопределенности модели, должны быть рассмотрены, как описано выше. Неопределенность, связанная с достоверностью и точностью моделей, должна рассматриваться в процессе оценки или путем принятия соответствующих коэффициентов в детерминированных проверках, или путем введения коэффициентов вероятностной модели в оценку надежности.

При проведении оценки надежности существующей конструкции необходимо учитывать следующее: коэффициенты преобразования, отражающие влияние формы и размеров образцов, температуру, влажность, воздействие продолжительности нагружения и т.д. Также следует учитывать уровень знаний о состоянии компонентов. Это достигается путем корректировки предполагаемой изменчивости или в несущей способности компонентов, или в размерах их поперечных сечений, в зависимости от типа конструкции.

При наблюдении износа существующей конструкции следует выявить механизмы износа, а также, на основе теоретических и экспериментальных исследований, осмотров и опыта, определить модель износа, прогнозирующую будущую работу конструкции.

7. Проверка

Проверка надежности существующей конструкции должна проводиться с использованием действующих строительных норм, как правило, основанных на методе предельных состояний. Следует обратить внимание как на критическое предельное состояние, так и на предельное состояние эксплуатационной пригодности. Проверка может быть произведена с использованием метода частных коэффициентов или методов конструктивной надежности, с учетом конструктивной системы и пластичности компонентов. Оценка надежности должна проводиться с учетом остаточного срока службы сооружения, базового периода времени и изменений условий конструкции, связанных с ожидаемой сменой режима эксплуатации.

Заключение по оценке надежности должно пройти проверку достоверности. В частности, необходимо объяснить расхождения между результатами оценки конструктивной надежности (например, недостаточная надежность) и реальным состоянием конструкции (например, отсутствие признаков повреждения или разрушения, удовлетворительная работа конструкции). Следует иметь в виду, что многие инженерные модели являются моделями с запасом, и их не всегда можно напрямую использовать для объяснения реальной ситуации.

Расчетный уровень надежности, используемый для проверки, следует принимать за уровень надежности, соответствующий критериям приемки, установленным проверенными и утвержденными нормами проектирования. Расчетный уровень надежности должен быть указан вместе с четко установленными функциями предельного состояния и специальными моделями основных переменных.

Также расчетный уровень надежности можно установить с учетом требуемого уровня работы для конструкции, базового периода времени и возможных последствий разрушения. В соответствии со стандартом ISO 2394 [1] требования, предъявляемые к оценке существующих конструкций, соответствуют требованиям к проектированию новых конструкций. Более низкие расчетные показатели надежности для существующих конструкций могут использоваться в том случае, если они обоснованы и обусловлены экономическими, социальными и надежными принципами (см. приложение F к стандарту ISO 13822 [2]).

Следует определять требуемое значение индекса надежности с учетом базового периода времени [2]. Для эксплуатационной пригодности и усталости базовый период времени приравнивается к остаточному сроку службы конструкции, в то время как для критических предельных состояний базовый период времени в принципе приравнивается к расчетному сроку службы, установленному для новых конструкций (50 лет для зданий). Этот общий подход должен применяться в особых случаях и дополняться подробным анализом характера предельных состояний эксплуатационной пригодности (обратимый, необратимый), усталости конструкции (контролируемая, неконтролируемая), а также последствий критических предельных состояний (экономические последствия, количество людей, подвергаемых опасности).

8. Оценка поврежденной конструкции

Для оценки поврежденной конструкции рекомендуется проведение следующих действий:

1) Визуальный осмотр

Рекомендуется всегда проводить предварительный визуальный осмотр конструкции с целью получения информации о ее состоянии. Серьезные дефекты всегда очевидны для опытного специалиста. В случае очень серьезных повреждений могут быть приняты срочные меры (такие, как консервирование сооружения).

2) Объяснение наблюдаемых явлений

Для того, чтобы иметь четкое представление о состоянии конструкции, необходимо смоделировать ее повреждение или наблюдаемое поведение, используя при этом модель конструкции и расчетную силу различных прилагаемых нагрузок или физических/химических веществ. Важно иметь доступную документацию, относящуюся к проекту, расчетам и строительству. При наличии расхождений между расчетами и наблюдениями целесообразно провести проверку для выявления ошибок проектирования, ошибок монтажа и т.д.

3) Оценка надежности

При наличии конструкции в ее фактическом состоянии и с учетом представленной здесь информации, оценку надежности конструкции можно провести или с помощью расчета вероятности разрушения, или метода частных коэффициентов. Необходимо учитывать, что модель реальной конструкции может отличаться от исходной модели. Если уровень надежности является достаточным (то есть он выше, чем стандартно допустимый уровень надежности в расчетах), то считается, что требования соблюдены и дальнейших действий не требуется.

4) Дополнительная информация

Если в соответствии с пунктом 3) уровень надежности является недостаточным, то необходимо получить дополнительную информацию путем использования более совершенных расчетных моделей, проведения дополнительных проверок и измерений, или оценки фактической нагрузки. Методы перерасчетов с использованием данной информации подробно описаны в пункте 5 настоящей главы.

5) Окончательное решение

Если уровень конструктивной надежности остается низким, необходимо выполнить следующие действия:

- принять данную ситуацию по экономическим причинам;
- снизить уровень нагрузки на конструкцию;
- произвести ремонт здания;
- начать работы по сносу конструкции.

Первое решение может быть обусловлено тем фактом, что затраты на повышение уровня надежности намного выше для существующей конструкции, чем для новой конструкции. Иногда этот довод используют те, кто утверждает, что более высокий уровень надежности, как правило, является требованием, предъявляемым к новым конструкциям, а не к существующим. Однако, когда речь идет о безопасности людей, экономическая оптимизация имеет ограниченное значение.

9. Заключение и окончательное решение

Заключение об оценке конструктивной надежности и возможные предварительные отчеты (если потребуется) должны содержать четкие выводы с учетом задачи оценки, основанные на тщательной оценке конструктивной надежности и затратах на ремонт или реконструкцию. Заключение должно быть кратким и четким. Рекомендуемая форма заключения представлена в приложении G к стандарту ISO 13822 [2].

Если уровень надежности существующей конструкции является достаточным, выполнение дальнейших действий не требуется. Если по результатам оценки выявлено, что уровень надежности конструкции является недостаточным, следует принять соответствующие меры. Может быть рекомендовано принятие временных мер, которые, в случае необходимости, должны быть незамедлительно предложены инженером. Инженеру следует указывать предпочтительное решение в качестве логичных дополнительных мер к процессу оценки в целом в каждом конкретном случае.

Следует отметить, что окончательное решение о принятии возможных мер должен принимать заказчик совместно с соответствующими надзорными органами, основываясь на результатах технической оценки и рекомендациях. Инженер, выполняющий оценку, в случае отсутствия в разумные сроки ответа со стороны заказчика, имеет законные основания проинформировать об этом соответствующие надзорные органы.

10. Заключение

Обычно оценка существующих конструкций основывается на следующих двух основных правилах:

- Необходимо применять действующие в настоящее время нормы для проверки конструктивной надежности, а старые нормы, действительные на момент проектирования конструкции, носят исключительно рекомендательный характер.
- Необходимо рассматривать фактические характеристики материалов конструкции, воздействия, геометрические параметры и поведение конструкции, а исходная проектная документация носит исключительно рекомендательный характер.

Наиболее важным этапом всего процесса оценки является анализ данных проверки и уточнение исходных данных по прочности и конструктивной надежности. Байесовский метод может быть эффективным инструментом.

Обычно оценка существующих конструкций представляет собой цикличный процесс, когда первая предварительная оценка сопровождается последующими тщательными обследованиями и оценкой. Заключение об оценке конструктивной надежности, подготовленное инженером, должно содержать рекомендации по принятию возможных мер. Однако, окончательное решение о принятии возможных мер должен принимать заказчик совместно с соответствующими надзорными органами.

Список литературы

[1] ISO 2394 (1998) General principles on reliability of structures. ISO, Geneva, Switzerland.

[2] ISO 13822 (2001) Basis for design of structures -Assessment of existing structures. ISO, Geneva, Switzerland.

[3] ISO 12491 (1998) Statistical methods for quality control of building materials and components. ISO, Geneva, Switzerland.

[4] EN 1990 Eurocode - Basis of structural design. CEN 2002.

[5] R.E. Melchers (2001) Structural reliability analysis and prediction. John Wiley & Sons.

[6] Ellingwood B.R. (1996) Reliability-based condition assessment and LRFD for existing structures. Structural Safety, 18 (2+3), 67-80.

[7] JCSS publication edited by D. Diamantidis (2001) Probabilistic Assessment of Existing Structures. RILEM. ENS France.

Приложение В. Перерасчет вероятностей

Данный пример перерасчета вероятностей был взят из документов [4] и [5]. Рассмотрим функцию предельного состояния G(X), где X – вектор основных переменных, а разрушение F описывается неравенством G(X) < 0. Если результатом проверки конструкции I является событие, описываемое неравенством H > 0, то с применением уравнения (1) из основного текста формула для перерасчета вероятности разрушения P(F|I) будет иметь следующий вид:

$$P(F|I) = P(G(X) < 0| H > 0) = \frac{P(G(X) < 0 \cap H > 0)}{P(H > 0)}$$
(B.1)

Например, рассмотрим свободно опертую стальную балку с длиной пролета L, находящуюся под воздействием статической равномерной нагрузки g и переменой нагрузки q. Другие параметры балки: пластический момент сопротивления сечения W и прочность стали f_v .

Применяя метод частных коэффициентов, расчетное условие $R_d - S_d > 0$ между расчетным значением R_d несущей способности R и расчетным значением S_d воздействия нагрузки S будет иметь следующий вид:

$$W\!f_{yk}/\gamma_{m} - (\gamma_{g}g_{k}L^{2}/8) + \gamma_{q}q_{k}L^{2}/8) > 0$$
 (B.2)

где f_{yk} обозначает нормативное сопротивление, g_k – характеристическое (номинальное) значение статической нагрузки g, q_k – характеристическое (номинальное) значение переменной нагрузки q, γ_m – частный коэффициент прочности стали, γ_g – частный коэффициент статической нагрузки, а γ_q – частный коэффициент переменной нагрузки. По аналогии с формулой (В.2), функция предельного состояния G(X) будет иметь следующий вид:

$$G(X) = R - S = Wf_y - (gL^2 / 8 + qL^2 / 8)$$
(B.3)

где все основные переменные, в основном рассматриваются как случайные переменные, которые характеризуются соответствующими вероятностными моделями.

Для проверки надежности балка была испытана, а также производилось максимальное нагружение до уровня q_{test} . Предполагается, что g_{act} это фактическое значение статической нагрузки g. Если несущая способность балки является достаточной, то информация I будет иметь следующий вид:

$$I = \{H > 0\} = \{Wf_{y} - (g_{act}L^{2}/8 + q_{test}L^{2}/8) > 0\}$$
(B.4)

где f_y – фактическая прочность стали, $g_{\rm act}$ – фактическая статическая нагрузка при условии, что она была определена с достаточной точностью (с помощью методов проведения испытаний без разрушения образца).

Для определения уточненной вероятности разрушения P(F|I) с использованием уравнения (В.1) следует вычислить следующие две вероятности:

$$P(G(X) < 0 \cap H > 0) = P(Wf_y - (gL^2/8 + qL^2/8) < 0 \cap Wf_y - (g_{act}L^2/8 + q_{test}L^2/8) > 0)$$
(B.5)
$$P(H > 0) = P(Wf_y - (g_{act}L^2/8 + q_{test}L^2/8) > 0)$$
(B.6)

Необходимо сделать дополнительные допущения относительно основных переменных. Получив результаты вычислений из формул (В.5) и (В.6), уточненную вероятность P(G(X) < 0 | H > 0) можно вычислить по формуле (В.1).

В качестве варианта, учитывая результаты контрольного испытания, функция плотности распределения вероятностей $f_R(r)$ несущей способности балки $R = W f_y$ может быть отсечена ниже уровня максимально допустимой нагрузки, как показано на рис. В.1.

Рис. В.1. Воздействие отсечения уровня максимального нагружения

на несущую способность конструкции.

Очевидно, отсечение значений несущей способности конструкции уменьшает уточненную вероятность разрушения конструкции, определенную как:

 $P_{\rm f} = P(R - S < 0)$ (B.7)

и, следовательно, увеличивает уточненное значение конструктивной надежности.

Приложение С. Байесовский метод оценки квантилей

Квантили основных переменных фактически могут быть уточнены с помощью байесовского метода, который описан в стандарте ISO 12491 [3]. В настоящей работе данная процедура ограничивается рассмотрением только нормальной переменной X, для которой функция априорного распределения $\Pi'(\mu, \sigma)$ величин μ и σ имеет следующий вид:

$$\Pi'(\mu,\sigma) = C\sigma^{-(1+\nu'+\delta(n'))} \exp\left\{-\frac{1}{2\sigma^2} \left[\nu'(s')^2 + n'(\mu-m')^2\right]\right\}$$
(C.1)

где C – нормирующая постоянная, $\delta(n') = 0$ при n' = 0, в противном случае $\delta(n') = 1$. Параметры априорного распределения m', s', n', v' – это параметры, асимптотически представленные следующим образом:

$$E(\mu) = m', E(\sigma) = s', V(\mu) = \frac{s'}{m'\sqrt{n'}}, V(\sigma) = \frac{1}{\sqrt{2\nu'}}$$
(C.2)

в то время как параметры n' и v' являются независимыми, и могут быть выбраны произвольно (но это не означает, что v' = n'-1). В уравнении (С.2) E(.) обозначает математическое ожидание, а V(.) – коэффициент вариации переменной в скобках. Уравнения (С.2) могут быть использованы для расчета неизвестных параметров n' и v' при условии, что значения $V(\mu)$ и $V(\sigma)$ рассчитываются при помощи экспериментальных данных или на основе имеющегося опыта.

Функция апостериорного распределения $\Pi'(\mu, \sigma)$ величин μ и σ является функцией того же типа, что и функция априорного распределения, но с параметрами m'', s'', n'' и v'', представленными следующим образом:

$$n''=n'+n$$

$$v''=v'+v+\delta(n')$$

$$m''n''=n'm'+nm$$

$$v''(s'')^{2} + n''(m'')^{2} = v'(s')^{2} + n'(m')^{2} + vs^{2} + nm^{2}$$
(C.3)

где *m* и *s* – выборочное среднее и стандартное отклонение, *n* – класс рассматриваемого образца, а v = n - 1. Отсюда прогнозируемое значение $x_{p,pred}$ квантиля x_p представлено в виде:

$$x_{p,\text{Bayes}} = m'' + t_p s'' \sqrt{1 + |1/n''|}$$
 (C.4)

где t_p – квантиль t-распределения с v'' степенями свободы (см. таблицу C.1). При отсутствии исходных данных считается, что n'=v'=0, а характеристики m'', n'', s'', v'' равны характеристикам выборки m, n, s, v. Тогда уравнение (C.4) формально можно преобразовать в, так называемую, прогнозную оценку квантиля, и оно будет иметь следующий вид:

$$x_{p,\text{pred}} = m + t_p s \sqrt{1 + |1/n|}$$
 (C.5)

где t_p снова обозначает квантиль t-распределения с v" степенями свободы (см. таблицу C.1). Более того, если известно стандартное отклонение σ (на основе прошлых расчетов), то $v = \infty$ и s следует заменить на σ .

Пример

Для расчета характеристического значения прочности бетона $f_{ck} = x_p$ при p = 0.05 возьмем выборку измерений прочности бетона n = 5, среднее значение $m = 29.2 M\Pi a$ и стандартное отклонение $s = 4.6 M\Pi a$. При отсутствии исходных данных считается, что n' = v' = 0, а характеристики m'', n'', s'', v'' равны характеристикам выборки m, n, s, v. Тогда из уравнения (C.5) следует, что прогнозируемое значение x_p будет представлено в виде:

$$f_{cu, \text{Bayes}} = 23.9 - 1.8 \times 4.3 \sqrt{\frac{1}{6} + 1} = 15.5 \text{M}\Pi a$$

где значение $t_p = -2,13$ взято из таблицы С.1 для 1 - p = 0,95 и v = 5 - 1 = 4. При наличии данных из предыдущего произведения можно эффективно использовать байесовский метод. Рассмотрим следующие исходные данные:

$$m' = 30,1$$
M Π a, $V(m') = 0,50$, $s' = 4,4$ M Π a, $V(s') = 0,28$

Из уравнения (С.2) следует, что:

$$n' = \left(\frac{4.6}{30.1} \frac{1}{0.50}\right)^2 < 1, \ v' = \frac{1}{2} \frac{1}{0.28^2} \approx 6$$

Отсюда рассмотрим следующие характеристики: n'=0 и v'=6. Учитывая, что v=n-1=4, на основе уравнений (С.3) получаем, что:

$$n''=6, v'=11, \overline{x''}=23,9$$
MIIa, $s''=4,3$ MIIa

и, в конечном счете, из уравнения (С.4) следует, что:

$$f_{cu, Bayes} = 23,9 - 1,8 \times 4,3\sqrt{\frac{1}{6}} + 1 = 15,5$$
 MITa

где значение $t_p = -1,81$ взято из таблицы С.1 для 1 - p = 0,95 и v = 10.

В данном примере найденное значение нормативного сопротивления (примерно на 10%) больше значения, полученного в результате применения метода прогнозирования без использования исходных данных. Следовательно, при наличии исходных данных байесовский метод может улучшить оценку квантилей (не всегда), в частности, если наблюдаются значительные расхождения в значениях переменной. Так или иначе, следует обращать особое внимание на источник исходных данных с учетом свойств рассматриваемой переменной.

V			1 - p			-	V			1 - p		
	0,90	0,95	0,975	0,99	0,995	-		0,90	0,95	0,975	0,99	0,995
3	1,64	2,35	3,18	4,54	5,84		12	1,36	1,78	2,18	2,68	3,06
4	1,53	2,13	2,78	3,75	4,60		14	1,35	1,76	2,14	2,62	2,98
5	1,48	2,02	2,57	3,37	4,03		16	1,34	1,75	2,12	2,58	2,92
6	1,44	1,94	2,45	3,14	3,71		18	1,33	1,73	2,10	2,55	2,88
7	1,42	1,89	2,36	3,00	3,50		20	1,32	1,72	2,09	2,53	2,85
8	1,40	1,86	2,31	2,90	3,36		25	1,32	1,71	2,06	2,49	2,79
9	1,38	1,83	2,26	2,82	3,25		30	1,31	1,70	2,04	2,46	2,75
10	1,37	1,81	2,23	2,76	3,17	_	∞	1,28	1,64	1,96	2,33	2,58

Таблица С.1. Квантили t-распределения с v степенями свободы

Приложения

ATTACHMENTS

1. MATHCAD sheet "Update.mcd"

MATHCAD sheet Update is intended for determination of updated probability using Bayes formula. Prior probabilities and likelihoods are taken from file "update.prn"

2. MATHCAD sheet "BayesFract.mcd"

MATHCAD sheet BayesFract intended for determination of the characteristic and design values and material partial factor γ M using test data in accordance to EN 1990, Annex D.

ГЛАВА VI - ПРИНЦИПЫ ОЦЕНКИ РИСКА

Милан Холицки¹

¹Институт имени Клокнера, Чешский технический университет в Праге, Чешская Республика

Общие положения

Традиционные методы проектирования инженерных сооружений и других инженерных систем часто основываются на концепции целевой вероятности разрушения. Однако это основополагающее значение, как правило, указывается только на основе сравнительных исследований и прошлого опыта. Кроме того, вероятностные методы проектирования страдают от нескольких недостатков, включая отсутствие рассмотрения в случайных и других ситуаций опасности и их последствий. Оба эти экстремальные условия все чаще и чаще становятся причиной серьезных разрушений и других неблагоприятных событий. Имеющийся опыт наглядно показывает, что вероятностные процедуры проектирования могут быть эффективно дополнены с помощью анализа и оценки рисков, которые могут принимать во внимание различные последствия неблагоприятных событий. Следовательно, ожидается, что в дополнение к традиционным вероятностным понятиям методы современных принципов конструирования будут также как правило включать критерии приемлемого риска.

1. Введение

1.1 Справочные документы

Справочные документы анализа риска систем инженерного строительства, рассматриваемые в данной работе, состоят из ряда национальных и международных стандартов [1] до [9]. Следует отметить, что Еврокод EN 1990 [10] для гражданского проектирования основан на концепции целевой вероятности разрушения $p_{\rm d}$. Однако широко известно, что надежность сооружений и других инженерных систем страдает от ряда неопределенностей, которые вряд ли могут быть проанализированы и хорошо описаны с помощью вероятностных методов [11, 12]. Более того, традиционные вероятностные понятия рассматривают значимость разрушения и других неблагоприятных событий очень смутно [10]. Поэтому вероятностные методы часто дополняются недавно разработанными методами оценки риска [12]. В некоторых странах, оценка риска даже становится обязательной по закону в случаях со сложными техническими системами (электростанциями, туннельными маршрутами).

1.2 Общие принципы

Общие принципы анализа риска и общие инструменты, применяемые для исследования строительных систем, рассматриваемых в данном документе, следуют основным понятиям, представленным в стандартах [1] до [9]. Анализ риска системы представляет собой важную часть оценки риска и всего управления рисками системы, как указано на рисунке 1 (заимствовано из [2]).

Анализ риска системы заключается в использовании всей доступной информации для оценки риска для отдельных лиц или групп населения, имущества и окружающей среды от выявленных опасностей. Оценка риска дополнительно включает в себя оценку риска (принятие или устранение), как указано на рисунке 1 (заимствовано из [2]). Вся процедура оценки риска, как правило, представляет собой повторяющийся процесс, как показано на рисунке 2 (заимствовано из [9]). Первый шаг в анализе рисков включает в себя контекстное определение (области применения), связанное с системой и последующей идентификацией опасностей.

оценка риска Контроль риска

Анализ риска

Оценка риска Принятие решения Мониторинг Определение опасности Оценка риска Принятие риска Устранение риска

Рисунок 1. Схема управления риском (заимствовано из [2]).

Система понимается [2] как ограниченная группа взаимосвязанных, взаимозависимых и взаимодействующих элементов, образующих сущность, которая достигает в своей среде определенной цели путем взаимодействия ее частей. В случае возникновения технологических опасностей, связанных со строительством, система, как правило, формируется из физической подсистемы, человеческой подсистемы, их управления, а также окружающей среды. Обратите внимание, что анализ рисков систем строительства (аналогично анализу большинства систем), как правило, включает несколько независимых компонентов (например, человеческую жизнь, травмы, экономические потери).

Любая техническая система может подвергаться воздействию множества возможных ситуаций опасности. В случае со строительными сооружениями ситуации опасности могут заключаться как в воздействиях окружающей среды (ветер, температура, снег, лавины, камнепады, почвенные воздействия, вода и подземные воды, химические или физические воздействия и т.д.), так и в деятельности человека (эксплуатация, химические или физические воздействия, пожар, взрыв и т.д.). Как правило, ситуации опасности вследствие человеческих ошибок являются более значительными, чем опасности, связанные с воздействием окружающей среды.

2. Классификация опасности

Опасность представляет набор обстоятельств, возможно, происходящих внутри данной системы, с вероятностью возникновения события с нежелательными последствиями. Например, опасность для системы строительства может представлять стечение обстоятельств с вероятностью к непредвиденного действия (например, пожар, взрыв) или воздействия окружающей среды (наводнения, торнадо) и/или недостаточной прочности или сопротивления или чрезмерного отклонения от предполагаемых размеров. В случае воздействия химического вещества, опасность может быть следствием ряда обстоятельств, способных оказывать воздействие [2]. Выявление и моделирование опасности — это процесс опознавания опасности и определения ее характеристик во времени и пространстве. В случае с системами строительства опасность H_i может быть связана с различными расчетные ситуациями в здании (как определено в [7]), включая постоянную, переходную и случайную расчетные ситуации. Как правило, H_i представляют собой взаимоисключающие ситуации (например, постоянные и случайные расчетные ситуации в здании). Тогда, если ситуация H_i возникает с вероятностоянные и случайные расчетные ситуации в здании). Тогда, если ситуация H_i возникает с вероятностью $P\{H_i\}$, то имеет место $\Sigma P\{H_i\} = 1$. Если ситуации H_i не являются взаимоисключающими, то ана-

лиз становится более сложным.

Обратите внимание, что в некоторых документах (например, в недавнем европейском стандарте EN 1990 [10]) опасный фактор определяется как событие, в то время как при анализе риска [2] он, как правило, рассматривается как состояние с вероятностью вызвать событие, следовательно, как синоним опасного положения.

3. Определение и моделирование соответствующих сценариев

Сценарий риска представляет собой последовательность возможных событий для данного риска, ведущих к нежелательным последствиям. Важнейшей задачей анализа рисков является определить возможные сбои в системе или ее подсистеме. Это требует исследования отдельных деталей и понимания системы [6]. Тем не менее, данная система часто является частью более крупной системы. Следовательно, моделирование и последующий анализ системы представляет собой условный анализ.

Моделирование соответствующих сценариев может зависеть от конкретных характеристик системы. Поэтому были разработаны различные методы для выявления риска (например, PHA HAZOP) и для моделирования соответствующих сценариев (дерево неисправностей, дерево событий/дерево решений, причинно-следственные сети). Подробное описание этих методов выходит за рамки данного стандарта, однако, встречается в [6, 9] и другой литературе.

4. Оценка вероятности

Вероятность — это, в целом, возможность осуществления или степень уверенности в осуществлении конкретного события, которое может произойти в течение заданного промежутка времени. В частности, надежность конструкции часто выражается как вероятность, связанная с конкретным требованием и заданным периодом времени, например, 50 лет [3,10].

Если предположить, что система может быть обнаружена во взаимоисключающих ситуациях H_i , а отказ, F_i системы (например, конструкции или ее элемента) при возникновении определенной ситуации H_i с условной вероятностью $P\{F \mid H_i\}$, тогда полная вероятность отказа p_F определяется законом полной вероятности (см., например, [11]), следующим образом:

$$p_F = \sum_i \mathbf{P}\{H_i\} \mathbf{P}\{F \mid H_i\}$$
(1)

Уравнение (1) может быть использовано для изменения частичных вероятностей $P\{H_i\}P\{F|H_i\}$ (в соответствии с ситуациями H_i) с целью соблюдения условия проектирования $p_F < p_t$, где p_t — указанная целевая вероятность отказа. Целевое значение p_t может быть определено с использованием вероятностной оптимизации целевой функции, описывающей, например, общую стоимость.

Условные вероятности $\mathrm{P}\!\left\{\!F\,\middle|\,H_i
ight\}$ должны быть определены с помощью подробного вероятностного анализа

соответствующих ситуаций H_i по соответствующим сценариям. Традиционные методы надежности [8] предполагают, что отказ, *F*, системы может также быть определено в области вектора основных переменных **X**. Например, предполагается, что отказ системы может быть определен неравенством $g(\mathbf{x})<0$, где $g(\mathbf{x})$ — так называемая функция предельного состояния, где \mathbf{x} — реализация вектора **X**. Отметим, что $g(\mathbf{x})=0$ описывает границу предельного состояния, а неравенство $g(\mathbf{x})>0$ — безопасное состояние конструкции.

Если плотность совместных вероятностей $f_x(x|H_i)$ основных переменных **X** в ситуации H_i известна, то условная вероятность отказа $P\{F|H_i\}$, может быть далее определена [6] с помощью интеграла:

$$\mathbf{P}\left\{F \mid H_i\right\} = \int_{g(x)<0} \mathbf{f}_x\left(x \mid H_i\right) \mathrm{d}x \tag{2}$$

Следует отметить, что вероятность $P\{F \mid H_i\}$ вычисляется с использованием уравнения (2) имеет, как правило, два существенных недостатка:

- неопределенность в определении предельного состояния функции g(x),

- неопределенность в теоретической модели для функции плотности $f_X(x \mid H_i)$ основных переменных **X**[8].

Эти недостатки, скорее всего, являются причинами наблюдаемого расхождения между определенной вероятностью p_F и фактической частотой отказов; Данная проблема вызывает особую тревогу в случае возникновения пожара. Тем не менее, требование вероятности $p_F < p_t$, как правило, принимаются в качестве основного критерия для проектирования конструкций.

При анализе рисков мы должны знать не только вероятность разрушения конструкции *F*, но и вероятности всех событий, имеющих неблагоприятные последствия. В целом, ситуации *H*_i могут вызвать ряд событий

 E_{ij} (например, недопустимых деформаций, полное развитие пожара). Необходимые условные вероятности $\mathrm{P}ig\{ E_{ij} \ | \ H_i ig\}$ должны быть оценены путем проведения отдельного анализа с использованием различных мето-

дов, например, метода дерева отказов или причинно-следственных сеток.

5. Оценка последствий

Последствия — это возможные результаты желаемого или нежелательного события, которые могут быть выражены устно или численно, с целью определить величину человеческих жертв и травм или ущерба для окружающей среды, а также экономических потерь [1]. Стандартная процедура для описания и/или расчета последствий называется анализом последствий. Очевидно, что величина последствий, как правило, не является одномерной. Однако в отдельных случаях они могут быть упрощены и представлены только несколькими составляющими, например, количеством унесенных человеческих жизней, величиной ущерба, нанесенного окружающей среде, и величиной расходов. В настоящее время, как правило, включены различные виды расходов. Предполагается, что негативные последствия событий E_{ij} могут быть обычно выражены несколькими составляющими $C_{ij,k}$, где индекс k обозначает отдельные составляющие (например, количество унесенных жизней, число человеческих травм и повреждений, выраженных в определенных единицах).

6. Оценка риска

Риск — это мера опасности, которую представляют нежелательные события для человека, окружающей среды или экономических ценностей. Риск, как правило, выражается в вероятности и последствиях нежелательных событий. Он часто вычисляется путем математической оценки последствий нежелательного события. В таком случае, он представляет собой результат умножения «вероятности × последствий».

Однако, более общая трактовка риска предполагает выражение вероятности и последствий не в виде умножения. Такая интерпретация иногда оказывается полезной, в частности, когда учитывается спектр последствий, при котором каждая величина имеет свою собственную вероятность возникновения [2].

Оценка риска — процесс, используемый для получения оценки меры риска. Как уже говорилось, оценка риска основана на определении опасностей и, как правило, включает следующие этапы: определение области применения, анализ повторяемости, анализ последствий, а также их сочетания [2]. При однозначном соответствии между последствиями $C_{ij,k}$ и событиями E_{ij} , компонент риска R_k , связанный с рассматриваемыми

ситуациями H_i представляет собой сумму:

$$R_{k} = \sum_{ij} C_{ij,k} \mathbf{P} \left\{ E_{ij} \mid H_{i} \right\} \mathbf{P} \left\{ H_{i} \right\}$$
(3)

Если зависимость последствий от событий является более сложной, чем однозначное соответствие, то уравнение (3) должно быть изменено. Практический пример уравнения (3) может быть найден в [10], где представлена попытка оценить риск вследствие постоянной и расчетной ситуации пожара.

В некоторых случаях можно иметь дело только с однокомпонентным риском R. Тогда индекс k в уравнении (2.3) может быть опущен. Кроме того, вероятность нежелательных событий может зависеть от вектора основных переменных X. Тогда общий риск R может быть формально записана следующим образом:

$$R = \int C(\mathbf{x}) \mathbf{f}_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$
(4)

где R (x) обозначает степень риска в зависимости от основных переменных X и $f_X(x)$ обозначает совместную вероятность функцию плотности X.

7. Логические деревья

Набор других логических данных деревья (решений) (дерево неисправностей, дерево событий, график причин/следствий) были разработаны для анализа рисков системы с [11] по [13]. Применение логических деревьев значительно дополняет и проясняет техническую работу. Использование этого инструмента широко распространено в анализе риска и имеет ряд важных преимуществ. Факторы, влияющие на окружающую среду, и деятельность человека могут легко рассматриваться одновременно. Логические деревья могут также включать обнаружение наиболее эффективных контрмер. Кроме того, они могут быть понятны людям без специального опыта и, следовательно, могут обеспечивать эффективное взаимодействие между экспертами и органами власти.

Дерево отказов может быть определено как логическая схема, отображающая комбинации воздействий, которые могут привести к нежелательному событию. При создании дерева отказов нежелательное событие представляет собой отправную точку. Исходя из этого события, выявляются возможные причины. Возможные причины и последствия должны быть логически связаны без введения каких-либо замкнутых цепей. Каждое событие, которое не является следствием предыдущего события, следует рассматривать в качестве независимой переменной.

Пример дерева отказов, представленный на рисунке 3, описывает обрушение плоской конструкции (показанной в нижней части рисунка 3).

Деревья отказов могут использоваться для выявления причин сбоев, в случаях когда они неизвестны. Однако наиболее распространенным применением является выявление возможных причин нежелательных событий, прежде чем они могут произойти. Поскольку деревья отказов также показывают возможные последствия событий, они очень полезны для создания наиболее точных мер по предотвращению этих событий. Дерево событий определяет возможные последующие события, начиная с исходного события. Каждый путь состоит из последовательности событий и заканчивается на уровне следствие (например, при структурной недостаточности, рисунок 4). Цель анализа дерева событий заключается в выявлении возможных последствий начального события и вычислении возможности возникновения этих последствий, соответствующих разной последовательности событий.

Простые примеры дерева событий, описывающие обрушение конструкции в случае постоянной и (случайной) расчетной ситуации пожара, приведены на рисунке 4. Вероятности, показанные на рисунке 4, имеют иллюстративные значения (приблизительно соответствуют 50-летнему периоду административного здания с площадью пожарного отсека, равной 250 м², защищенной стальной конструкцией, без спринклеров).

Нет

Рисунок 4. Дерево событий, описывающее разрушение конструкции в случае постоянной расчетной ситуации и расчетной ситуации пожара (все данные приблизительно связаны с 50-летним сроком службы административного здания с площадью пожарного отсека, составляющей 250 м², не оборудованное спринклерами и имеющее защитную стальную конструкцию).

Логические деревья могут быть дополнены последствиями событий; графическое отображение такого дерева называется

картой причин и последствий. Карта последствиий соответствует дереву событий с подходящим отображением ожидаемых последствий. Для примера рисунок 4 может включать последствия, связанные с каждой вероятностью (частота в год) разрушения конструкции при заданных условиях. Тогда дерево может быть использовано для анализа причин/последствий или рисков (полезности).

Простейшей формой рассмотрения причинно-следственных связей является так называемый предварительный анализ риска (полезности), когда основная статистическая и вероятностная информация доступна до принятия какого-либо решения или совершения какого-либо действия. Предварительный анализ представляет собой оценку риска, связанного с различными решениями, как правило, используемую для сравнения рисков с соответствующими различными решениями. Анализ с последующим решением отличается от анализа с предшествующим решением способом рассмотрения возможных изменений в разветвленных вероятностях и/или последствий вследствие мер по снижению риска, мер смягчения риска и сбора дополнительной информации. Анализ задняя решение может быть использовано для оценки различных дополнительных мероприятий, вли-яющих на общий риск.

Другое важное изменение логических деревьев известен как предварительно задней анализа решений. Цель анализа предварительно задняя принятия является определение оптимальных решений в отношении деятельности, которая может быть выполнена в будущем, например, планирование снижения рисков деятельности и / или сбора новой информации. Важной предпосылкой для предварительного задней анализа решений является рассмотрение будущих действий, которые могут быть применены с учетом результатов планируемых мероприятий.

8. Байесовская сеть

Еще одним перспективным инструментом для анализа рисков являются байесовские причинно-следственные сети (сети доверия) [13,14]. Простой пример причинно-следственной сети показан на рисунке 5. Сеть, содержащая только шанс из четырех узлов описывает разрушение конструкции вследствие постоянной расчетной ситуации и расчетной ситуации пожара аналогично тому, как дерево событий на рисунке 4. По сравнению с деревом событий, показанных на рисунке 4 сети на рисунке 5 также включает эффект оросителей (узел В). Обратите внимание, что кнопки со стрелками на рисунке 5 показывают, причинно-следственные связи между взаимосвязанных случайных узлов.

Рисунок 5. причинная сеть описания разрушение конструкции вследствие постоянной расчетной ситуации и расчетной ситуации пожара.

Обрушение конструкции зависит от вероятности возникновения постоянной ситуации и ситуации пожара, а также условных вероятностей полного развития пожара, которые зависят от рабочей силы спринклеров и условной вероятности обрушения конструкции в условиях, заданных родительскими узлами (например, когда пожар полностью развился — на стадии полного развития пожара после вспышки). Очевидно, что причинноследственная сеть кажется гораздо более эффективной, чем версия дерева событий.

Кроме того, каждый узел может иметь несколько состояний. Следовательно, входные данные не указаны непосредственно в графическом представлении сети, но приведены в таблицах условных вероятностей.

Основной принцип расчета вероятностей используется в байесовских сетях можно проиллюстрировать с учетом узлы A, B и D сети на рисунке 5. Один дочерний узел D (Огонь перекрытия) зависит от двух родительских узлов: (Проектные ситуации) и B (спринклеры). Если узлы родителей A и B имеют дискретные состояния A_i и B_j , то вероятность события D_k (определенное состояние узла D) дается следующей формулой:

$$\mathbf{P}(D_k) = \sum \mathbf{P}(D_k | A_i B_j) \mathbf{P}(A_i) \mathbf{P}(B_j)$$
(5)

Уравнение (5) представляет собой фундаментальную теоретическую инструмент для анализа байесовской сети. Входные данные состоят из вероятностей $P(A_i)$ и $P(B_j)$, а условные вероятности $P(D_k | A_i B_j)$. Эти обширные данные основаны на имеющихся статистических данных, вероятностного анализа или экспертизы (решение) и прозрачно представлены в таблицах условных вероятностей.

Байесовских сетей дополненные решения и коммунальных узлы, называемые влияния схемы [13,14] обеспечивают мощный инструмент для оценки риска. На самом деле схема влияние обобщение Причина / последствие-графика говорилось выше. Основные особенности этого инструмента можно проиллюстрировать на примере, показанном на рисунке 6, который является продолжением основной задачи, указанной на рисунке 5. На рисунке 6 представлена упрощенная схема влияния, разработанная недавно [15,16], для анализа риска зданий в постоянной расчетной ситуации и расчетной ситуации пожара.

Сеть состоит из семи случайных узлов, пронумерованных 1, 2, 3, 4, 5, 12 и 14, четыре решения узлов 6, 7, 15 и 16, а также шесть коммунальных узлов 8, 9, 10, 11, 13 и 17. Грузопассажирский узлы представляют собой затраты различных мер пожарной безопасности (узлов 8, 10, 17), повреждения здания (узлы 9, 11) и травм

(узел 13).

Направленные стрелки, указывающие причинно-следственные связи между родителем и детьми узлы соединять шанс, принятия и коммунальных узлов. Все причинно-следственные связи должны быть описаны с помощью соответствующих входных данных (условных вероятностей или энергоблоки), связанных с предполагаемых состояний узлов. Например утилита узлы (кроме полезной узла 13) находятся в прямой зависимости от размера здания (15) узла. Полезность узла 13, описывающее стоимость травмы, зависит от размера здания через числа лиц, находящихся под угрозой, представленных случайного узла 14. Эти данные иногда трудно определить, и экспертиза часто будет часто.

Количество

Рисунок 6. Байесовская сеть, описывающая конструкцию в нормальных условиях и в условиях пожара.

Шанс узлы 1, 2, 3, 4, 5, 12 и 14 представляют собой альтернативные случайных величин, имеющих два или более государств. Узел 1-положение описывает вероятность пожара начала PFI, S = P (H2) и дополнительной вероятностью 1- рп, с нормальной ситуации H1. Шанс узел 2-Оросители описывает функционирование оросителей при условии, что решение (узел 6) положительно; вероятность активного состояния спринклеров данных о начале пожара, как предполагается, будет очень высокой, например 0999. Шанс узел 3-Flashover имеет два состояния: дизайн ситуация H3 (огонь дизайн ситуация без перекрытия) и H4 (дизайн пожарная ситуация с перекрытия, когда огонь полностью разработан).

Когда спринклеры установлены, перекрытия в отсеке 250 м2 имеет положительное состояние с условной вероятности 0,002; если разбрызгиватели не установлен, то Р {H4 | H2} = 0066 [15,16]. Предполагается, что с вероятностями, равными квадратами выше значений огонь будет мигать в течение всего здания, таким образом, значения 0,000004 и 0,0044 считаются за возможность узла 3. шанс узла 4-Protection (введен для официальных вычислительных причинам) имеет одинаковые состояния, так как решение узла 7-защиты. Шанс узел 5-Collapse представляет собой разрушение конструкции, описанной распределением вероятностей связан с тремя детьми узлов (1,3,4). Эта ситуация вряд ли может быть смоделирована с помощью дерева решений. Следует отметить, что вероятность распада в случае пожара, но не перекрытие может быть меньше, чем в постоянной ситуации, из-за более низкой приложенной нагрузки.

9. Принятие решений

Принятия решений, как правило, основаны на процессе принятия риска и анализа альтернатив (см рис 1), который иногда называют оценкой риска. Принятие риска на основе различных критериев риска, являются ориентирами, по которым результаты анализа риска должны быть оценены. Критерии, как правило, на основе регламентов, стандартов, опыта и / или теоретических знаний, используемых в качестве основы для решения

о приемлемом риске. Критерии приемлемости и критерии риска может быть иногда отличается [1]. Различные аспекты могут быть рассмотрены, в том числе культурные, социальные, психологические, экономичный и другой аспект [6], [17], [18] и [19]. Как правило, критерии приемлемости может быть выражено в устной форме или цифровой форме [6].

Если предположить, например, что принятие ограничивает Ck, d для Ck компоненты указаны, то можно спроектировать структуру на основе приемлемых рисков с использованием критерия Ck <Ck, D, которые могут дополнить требование вероятность пΦ <PT.

Следует отметить, что различные уровни риска могут быть признаны, например, приемлемым риском, приемлемым риском и объективный риск [6] (см определения терминов диссертаций в [2]).

Это замечательный факт, что публика, кажется, вообще лучше готовы принять определенные риски, чем баллотироваться на указанных вероятностей недостаточности [17].

10. Предполагаемая стоимость предотвращения смертности

Последствия могут, как правило, включать в себя экономические, а также социальные и экологические издержки [17,18,19]. Примером может служить влиянием схеме, показанной на рисунке 6 используется для оценки риска здании в результате пожара. Таким образом, для того, чтобы сравнить все возможные последствия необходимо, чтобы выразить все последствия в плане единого блока. Это, кажется, очень трудная задача. Один из возможных подходов представлена в концепции подразумеваемой Стоимость Предотвращение индекс Fatality ICAF или качество жизни LQI [19]. Таблица 1 показывает значения стоимости ICAF для отдельных стран, принятых из [19]. Похоже, что стоимость ICAF может быть оценена примерно от 1 до 3 миллионов долларов США.

Таблица 1. Предполагаемые Стоимость Предотвращение смертельного исхода - ICAF (E),, Финансовые данные в полученной из ООН-HDR 2001, Всемирный банк США по ППС \$ (1999).

<i>g</i> - годо-	<i>е</i> - срок службы	2 <i>w</i> -	ICAF(Δ <i>e</i>)	
вой доход		рабочая	[× 106]	
		часть е		
34000	77	0.15	2.6	
26000	81	0.15	2.1	
25000	77	0.125	1.9	
22000	77	0.125	1.7	
8000	75	0.15	0.6	
8800	72	0.15	0.6	
9100	55	0.15	0.5	
5900	70	0.15	0.4	
3900	70	0.15	0.3	
2400	63	0.15	0.1	
800	47	0.18	0.04	
	<i>9</i> - годо- вой доход 34000 26000 25000 22000 8000 8800 9100 5900 3900 2400 800	g- годо- вой доходc- срок службы340007726000812500077220007780007588007559007039007024006380047	g- годо- вой доходc- срок службы2 w- рабочая часть e34000770.1534000770.1526000810.1525000770.12522000770.1258000750.158800720.159100550.155900700.153900700.152400630.15800470.18	

Подразумеваемая Стоимость Предотвращения смертельного исхода (ICAF) может быть выражена в виде:

$$ICAF(\Delta e) = g \left(1 - \left(1 + \frac{\Delta e}{e} \right)^{1 - \frac{1}{w}} \right) \Delta e$$
 (6)

где символы *g*, *e* и *w* определены в таблице 1. Однако, концепция подразумеваемой Стоимость Предотвращение смертельного исхода, описываемой уравнением (6) является лишь одним из возможных подходов к комплексной проблеме оценки социальных последствий. В настоящее дальнейшего интенсивного расследования не ожидается.

11. Заключение

Риск обычно оценивается по математическим ожиданием последствий нежелательного события, которые часто приводят к продукции «вероятность × последствий". Как правило риск систем гражданских инженерных представляет собой многомерную величина, имеющая несколько компонентов.

Анализ рисков на основе идентификации опасностей и обычно содержит следующие этапы: определение об-

ласти видимости, идентификацию опасностей, определение и моделирование сценариев опасности, оценки вероятностей, оценки последствий, оценки риска и принятия решений.

Наиболее важный вклад в анализ рисков и оценки состоит в систематическом рассмотрении различных последствий. Некоторые методы доступны в настоящее время: схемы принятия решений, байесовские сети доверия и влияния схемы. Имеющийся опыт показывает, что байесовские доверительные сети обеспечивают прозрачное, логические и эффективный инструмент для анализа инженерных систем. Следует, однако, подчеркнуть, что любой анализ технической системы всегда зависит от принятых исходных данных, часто очень неопределенной природы. Входные данные должны быть оценены с учетом конкретных технологических и экономических условий данной системы. В частности, экономические, социальные и экологические последствия неблагоприятных событий требует дальнейшего изучения.

Похоже, что методы анализа и оценки рисков могут значительно способствовать дальнейшему совершенствованию действующего инженерного проектирования. Примечательно, что общественность лучше подготовлены, чтобы принять определенные риски, чем баллотироваться на указанных вероятностей отказа сделает применение оценки рисков легче. Следовательно, ожидается, что в ближайшее время вероятностных методов в области проектирования будут дополнены критерии приемлемого риска.

Список литературы

[1] NS 5814, Требования к анализу риска. 1991.

[2] CAN/CSA – требования и руководство Q634-91 по анализу рисков.1991.

[3] ISO 2394 Общие принципы надежности конструкций. 1998.

[4] ISO/DIS 8930 Общие принципы надежности конструкций - Список эквивалентных терминов. 1999.

[5] Доклад THO, 96-CON-R1599 Предложение для тех рамках, в имени развивающихся терминологии в отношении к процессу вероятностного разработке и/или оценке строительных и инженерных сооружений со ссылкой на ISO 8930. 1996.

[6] СІВ ТG 32, Доклад 259 Оценка рисков и информирование о рисках в гражданском строительстве, СІВ Секретариат 2001.

[7] Руководство ИСО / МЭК 73: Управление рисками – Словарь – Руководящие принципы для использования в стандартах, 2002.

[8] ISO 9000: Системы менеджмента качества – Основные положения и словарь, 2000.

[9] Руководство ИСО / МЭК 51: аспекты безопасности - Руководство по их включению в стандарты 1999 года.

[10] EN 1990: Основы проектирования. CEN TC 250, проект, апрель 2002.

[11] Шнайдер, Дж.: Введение в безопасности и надежности конструкций. Сооружений Документы Ванные 5, Международная ассоциация по мостостроения и строительной техники, IABSE, Цюрих, 1997.

[12] М.Г. Стюард и Р.Е. Мелчерс, Вероятностная оценка риска инженерной системы. Чепмен и Холл, Лондон 1997.

[13] Дженсен Финн В. (1999) Введение в байесовских сетей. Ольборг университет, Дания, 1996.

[14] Хугин система: Версия 5.7, профессиональный. Хугин Эксперт / S, Нильс Jernes Vej 10, DK-9220 Ольборг, Дания, 2001.

[15] Холицки М. и Шлейх Дж.-Б.: Моделирование структуры под постоянным и огонь расчетной ситуации. Ргос. безопасности, риска и надежности - Тенденции в области машиностроения. Международная конференция, Мальта, 21 / 23.3.01, А.А. Balkema, Роттердам, 2001, стр. 789-794.

[16] Холицки М.: Оценка риска стальных зданий и пассажиров при пожаре. ICASP 9, Беркли, 2003, стр. 163-168.

[17] Льюис Р.: Общественное восприятие риска, RSA Journal, ноябрь 1995, стр. 52-63.

[18] Шнайдер Дж.: безопасности - Дело рисков, затрат и консенсуса. Проектирование зданий и сооружений International. № 4, ноябрь 2000 г., стр. 266-269.

[19] Рэквитс Р.: Новые LQI-разработки, ССПС семинар по надежность, основанное калибровки, Цюрих, 2002.

Условные обозначения

 A_i — состояния узла A

 B_i — состояния узла B

 D_k — состояния узла D

 $C_{\scriptscriptstyle ii}$ — последствия событий $E_{\scriptscriptstyle ij}$ (полезность, стоимость, ущерб, травмы)

R — общий ожидаемый риск

 R_k — элемент риска

 E_{ii} — события

 H_i — ситуация опаности i

 $P(F/H_i)$ — вероятность разрушения F при ситуации H_i

е — ожидаемый срок службы

g — годовой доход

- *w* рабочая часть *е*
- g(x) функция эффективности (предельного состояния)
- $p_{\scriptscriptstyle F}$ вероятность разрушения ${\it F}$
- $p_{\rm d}$ целевая вероятность разрушения
- $p_{\rm f}$ вероятность ${\rm P}(F/H_2)$ разрушения конструкции при пожаре
- $p_{\rm fi,s}$ вероятность возникновения пожара ${\rm P}(H_2)$
- **х** общая точка вектора основных переменных
- **X** вектор основных переменных
- β показатель надежности
- $\varphi_{\scriptscriptstyle X}(x)$ функция плотности вероятности вектора основных переменных X.
- $\Phi_{\scriptscriptstyle N}^{\scriptscriptstyle -1}(p_{\scriptscriptstyle F})$ функция обратного распределения стандартизованной нормальной переменной.
ПРИЛОЖЕНИЕ А. ОСНОВНЫЕ СТАТИСТИЧЕСКИЕ ПОНЯТИЯ И МЕТОДЫ

Milan Holický

Klokner Institute, Czech Technical University in Prague, Czech Republic

Summary

Elementary concepts and techniques of the theory of probability and mathematical statistics required for understanding of basic reliability methods are reviewed and illustrated by a number of numerical examples. Computational procedures for determination of sample characteristics, fractiles of common theoretical models and estimates for fractiles based on small samples can be applied using the attached MATHCAD sheets.

1 INTRODUCTION

1.1 Background materials

Elementary concepts and techniques of the theory of probability and mathematical statistics applicable to civil engineering are available in a number of standards [1 to 5], background materials [6, 7, 8], software products [9, 10, 11] and books [12 to 24]. Additional information may be found in the extensive literature listed in the books [12, 13] and others. In particular, documents developed by JCSS [6, 7] and recently published handbook [8] are closely related to the statistical techniques described in this text.

1.2 General principles

The theory of structural reliability is based on a general principle that all the basic variables are considered as random variables having appropriate type of probability distribution. Different types of distributions should be used for description of actions, material properties and geometric data. Prior theoretical models of basic variables and procedures for probabilistic analysis are indicated in JCSS documents. Sample characteristics are used as estimates of population parameters. In addition the population fractiles must be often assessed using small samples. MATHCAD sheets that supplement described computational procedures can be effectively used in practical applications.

2 POPULATION AND SAMPLES

2.1 General

Actions, mechanical properties and geometric data are generally described by random variables (mainly by continuous variables). A random variable X, (e.g. concrete strength), is such a variable, which may take each of the values of a specified set of values (e.g. any value from a given interval), with a known or estimated probability. As a rule, only a limited number of observations, constituting a random sample $x_1, x_2, x_3, \dots, x_n$ of size *n* taken from a population, is available for a variable X. Population is a general statistical term used for the totality of units under consideration, e.g. for all concrete produced under specified conditions within a certain period of time. The aim of statistical methods is to make decisions concerning

(2.1)

the properties of the population using the information derived from one or more random samples.

2.2 Sample characteristics

A sample characteristic is a quantity used to describe the basic properties of a sample. The three basic sample characteristics, which are most commonly used in practical applications, are:

- the mean m representing the basic measure of central tendency;
 - the variance s² describing the basic measure of dispersion; and
 - the coefficient of skewness ω giving the basic measure of asymmetry.

The sample mean m (an estimate of the population mean) is defined as the sum

$$m = (\Sigma x_i) / n$$

with the summation being extended over all the n values of xi.

The sample variance s^2 (an estimate of the population variance), is defined as:

$$s^{2} = (\Sigma (x_{i} - m)^{2}) / (n - 1)$$
(2.2)

the summation being again extended over all values x_i . Sample standard deviation s is the positive square root of the variance s^2 .

The sample coefficient of skewness ω (an estimate of the population skewness) characterising asymmetry of the distribution is defined as

$$\omega = [n (\Sigma (x_i - m)^3) / (n-1) / (n-2)] / s^3$$
(2.3)

Thus, the coefficient of skewness is derived from the central moment of order 3 divided by s^3 . If the sample has more distant values to the right from the mean than to the left, the distribution is said to be skewed to the right or to have a positive skewness. If the reverse is true, it is said to be skewed to the left or to have a negative skewness.

In some cases two different samples may be taken from one population and their combination is needed. If the original data are not available, then the characteristics of combined sample may be determined using the characteristics of both samples. If the sample sizes are n_1 , n_2 , the means m_1 , m_2 , standard deviations s_1 , s_2 and skewnesses ω_1 , ω_2 , then the combined sample of the size $n = n_1+n_2$ has the characteristics

$$m = \frac{n_1 m_1 + n_2 m_2}{n}$$

$$s^2 = \frac{n_1 s_1^2 + n_2 s_2^2}{n} + \frac{n_1 n_2}{n^2} (m_1 - m_2)^2 \qquad (2.4)$$

$$\omega = \frac{1}{s^3} \left[\frac{n_1 s_1^3 \omega_1 + n_2 s_2^3 \omega_2}{n} + \frac{3n_1 n_2 (m_1 - m_2) (s_1^3 - s_2^3)}{n^2} - \frac{n_1 n_2 (n_1 - n_2) (m_1 - m_2)^3}{n^3} \right]$$

Another important characteristic describing the relative dispersion of a sample is the coefficient of variation v, defined as the ratio of standard deviation s to the mean m

$$v = s / m$$
 (2.5)

The coefficient of variation v can be effectively used only if the mean m differs from zero. When the mean is much less than the standard deviation, then the standard deviation rather then the coefficient of variation should be considered as a measure of the dispersion. The coefficient of variation v is often used as a measure of production quality; for concrete

strength may be expected within a broad range from 0,05 up to 0,20, for structural steel from 0,07 to 0,10.

2.3 Distribution function

Probability distribution is a term generally used for any function giving the probability that a variable X belongs to a given set of values. The basic theoretical models used to describe the probability distribution of a random variable may be obtained from a random sample by increasing the sample size or by smoothing either the frequency distribution or the cumulative frequency polygon.

An idealisation of a cumulative frequency polygon is the distribution function $\Phi(x)$ giving, for each value x, the probability that the variable X is less than or equal to x:

$$\Phi(x) = P(X \le x) \quad (2.6)$$

A probability density function $\varphi(x)$ is an idealisation of a relative frequency distribution. It is formally defined as the derivative (when it exists) of the distribution function:

$$\varphi(x) = d\Phi(x) / dx \qquad (2.7)$$

Note that Appendix 1 to this Chapter provides a review of selected theoretical models of continuous random variables that are most frequently used in reliability analysis of civil structures.

Example 2.1.

A continuous random variable, which may attain equally likely any point x within a two-sided interval $\langle a, b \rangle$ (each point x has the same probability density $\varphi(x)$) is described by a so-called uniform distribution shown in Figure 2.1.

Figure 2.1. Uniform distribution

The uniform distribution is a basic type of distribution used not only in simulation procedures but also in theoretical modelling of some actions and geometric data. Shapes of the distribution function $\Phi(x)$ and probability density function $\phi(x)$ for the uniform distribution are shown in Figure 2.1. We can easily observe that it is a general property of the

probability density function that the probability of a set of all values of any random variable is equal to 1

$$\int_{-\infty}^{\infty} \varphi(x) dx = \int_{a}^{b} \varphi(x) dx = 1$$
(2.8)

Thus, the surface bounded by the horizontal axis x and the curve of the density function $\phi(x)$ has the area equal to unity.

2.4 Population parameters

The population parameters are quantities used in describing the distribution of a random variable, as estimated from one or more samples. As in the case of random samples, three basic population parameters are commonly used in practical applications:

- the mean μ representing the basic measure of central tendency;

- the variance σ^2 as the basic measure of dispersion; and

- the coefficient of skewness ø giving the degree of asymmetry.

The population mean μ , for a continuous variable X having the probability density $\varphi(x)$, is defined as

$$\mu = \int x \phi(x) dx \qquad (2.9)$$

the integral being extended over the interval of variation of the variable X. The population variance σ^2 , for a continuous variable X having the probability density function $\varphi(x)$, is the mean of the squared deviation of the variable from its mean:

$$\sigma^2 = \int (x - \mu)^2 \varphi(x) dx \qquad (2.10)$$

The population standard deviation σ is the positive square root of the population variance σ^2 .

The population coefficient of skewness, characterising asymmetry of the distribution, is defined as

$$\omega = \int (x - \mu)^3 \phi(x) dx / \sigma^3 \qquad (2.11)$$

Another population parameter based on the fourth order moment is called kurtosis ε .

$$\varepsilon = \left[(x - \mu)^4 \phi(x) dx / \sigma^4 - 3 \right] \qquad (2.12)$$

Note that for normal distribution (described in Section 3.1) the kurtosis ε defined by equation (2.12) is zero. However, this parameter is used mainly in theoretical consideration.

Another important parameter of the population is the coefficient of variation V defined similarly as the sample coefficient of variation

$$V = \sigma / \mu$$
 (2.13)

The same restriction on the practical use of V applies as in the case of samples.

Geometrically μ is actually the x coordinate of the centre of gravity of the area bounded by the horizontal axis x and the curve of density function $\varphi(x)$. Figure 2.2 shows an example of probability density function of lognormal distribution illustrating the geometric interpretation of the mean μ and standard deviation σ .

The measure of dispersion of a random variable X relative to the mean μ is given by the central moment of the second order (moment of inertia) of the area, and standard deviation

 σ is therefore the centroidal radius of gyration around the mean μ of the area bounded by the horizontal axis *x* and the curve of probability density function $\varphi(x)$.

A very important population characteristic is the fractile x_p . If X is a continuous variable and p is a probability (a real number between 0 and 1), the p-fractile x_p is the value of the variable X for which the probability that the variable X is less than or equal to x_p is p, and hence, for which the distribution function $\Phi(x_p)$ is equal to p. Thus,

$$\mathbb{P}(X \le x_p) = \Phi(x_p) = p \tag{2.14}$$

In civil engineering the probabilities p = 0,001; 0,01; 0,05 and 0,10 are used most frequently. The probability p is often written as a percentage (e.g. p = 0,1 %; 1 %; 5 %; 10 %). If this is done, then x_p is called a percentile, for example the 5th percentile is used when p = 5 %. If p=50 %, then x_p is called the median. More details about the fractiles of continuous variables are given in the following sections.

Figure 2.2. Geometric illustration of the mean μ and standard deviation σ

Example 2.2.

J

Parameters of the uniform distribution from example 2.1 may be derived using equations (2.9) to (2.13) as

$$\mu = (a+b)/2, \ \sigma = (b-a)/\sqrt{12}, \ \omega = 0, \ \varepsilon = -2,96, \ V = (b-a)/((a+b)\sqrt{3})$$

The skewness of a uniform distribution is zero, kurtosis is negative (independent of the bounds *a* and *b*). Obviously the distribution is symmetric as the values of the random variable are distributed uniformly. If the lower bound of the distribution is zero, a = 0 (which is sometimes assumed in practical applications), then

$$u = 0.5 b, \sigma = 0.289 b, \omega = 0, \varepsilon = -2.96, V = 0.577$$

Let us note that the coefficient of variation V in this case (when a = 0) is independent of b and its value is relatively high (V = 0.577).

3 SELECTED MODELS OF RANDOM VARIABLES

3.1 Normal distribution

Most frequently used models of continuous random variables that are applied in reliability analysis of civil structures are reviewed in Appendix 1 of this Chapter. From a practical and theoretical point of view the most important type of distribution of a continuous random variable is the normal (Laplace-Gauss) distribution. Symmetric normal distribution of a variable X is defined on an unlimited interval $-\infty < x < \infty$ (which can be undesirable in some practical applications) and depends on two parameters only - on the mean μ and on the standard deviation σ . Symbolically it is often denoted as N(μ , σ).

The normal distribution is frequently used as a theoretical model of various types of random variables describing some loads (self-weight), mechanical properties (strengths) and geometrical properties (outer dimensions). It is convenient for symmetric random variable with a relatively low variance (coefficient of variation V < 0,3). It fails when used for asymmetric variables with great variance and skewness $\omega > 0,5$.

The probability density function of a normal random variable X with a mean μ and standard deviation σ is given by the exponential expression

$$\varphi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
(3.1)

Skewness ω and kurtosis ε are zero for a normal distribution.

Tables for normal distributions are commonly available [12, 13] for probability density function $\varphi(u)$ and distribution function $\Phi(u)$ of a standardized variable U, which is defined by a general transformation relation (used for any type of distribution)

$$U = \frac{X - \mu}{\sigma}$$
(3.2)

The standardized random variable U has a zero mean and variance (standard deviation) equal to one; symbolically it is often denoted as N(0, 1).

The probability density function of the standardized random variable U is then given as a function of u

$$\varphi(u) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) \tag{3.3}$$

The probability density function of a normal and lognormal distribution with a coefficient of skewness $\omega = 1,0$ (described in the next section 3.2) of the standardized random variable u is shown in Figure 3.1.

Note that the probability density function of the standardized normal distribution is plotted in Figure 3.1 for *u* in the interval $\langle -3, +3 \rangle$, which covers the standardised variable *U* with a high probability of 0,9973 (in engineering practice this interval is often called interval $\pm 3 \sigma$).

3.2 Lognormal distribution

Generally one-sided limited asymmetric lognormal distribution is defined on a limited interval $x_0 < x < \infty$ or $-\infty < x < x_0$. Therefore it eliminates one of the undesirable properties of the normal distribution. A lognormal distribution is generally dependent on three parameters. Commonly the moment parameters are used: mean $\mu \alpha$, standard deviation $\sigma \alpha$ and skewness ω_{α} . If the skewness ω_{α} is unknown or uncertain, the lower or upper bound x_0 is used.

(3.6)

Random variable \boldsymbol{X} has a lognormal (general three-parametric) distribution if the transformed random variable

$$Y = \ln |X - x_0|$$
 (3.4)

has a normal distribution. In this relation x_0 denotes the lower or upper limit of distribution of a variable X, which depends on skewness ω_x . If the variable has a mean μ_x and standard deviation σ_x , then the lower or upper limit can be expressed as

$$x_0 = \mu_X - \sigma_X / c \qquad (3.5)$$

where the coefficient c is given by the value of skewness ω_X according to the relation

$$\omega_X = c^3 + 3c^3$$

from which follows an explicit relation for c

$$c = \left[\left(\sqrt{\omega_{\chi}^{2} + 4} + \omega_{\chi} \right)^{\mu_{3}} - \left(\sqrt{\omega_{\chi}^{2} + 4} - \omega_{\chi} \right)^{\mu_{3}} \right] 2^{-\mu_{3}}$$
(3.7)

Figure 3.1. Normal and lognormal distribution (skewness $\omega = 1,0$)

The dependence of the limit x_0 on the coefficient *c* is obvious from Table 3.1 in which the lower bound $u_0 = -1/c$ of the standardised random variable $U=(X-\mu_X)/\sigma_X$ are given for selected values of the coefficient of skewness $\omega_X \ge 0$. For $\omega_X \le 0$ values of u_0 with an inverse sign (i.e. positive) are considered. A lognormal distribution with the skewness $\omega_X = 0$ becomes a normal distribution ($u_0 = -1/c \rightarrow \pm \infty$).

Table 3.1. The lower limit $u_0 = -1/c$ for selected values of coefficient of skewness $\omega_X \ge 0$.

ωx	0	0,5	1,0	1,5	2,0
$u_0 = -1/c$	-00	-6,05	-3,10	-2,14	-1,68

When creating a theoretical model it is therefore possible to consider, besides the mean μ_X and standard deviation σ_X , the skewness ω_X or alternatively the lower or upper bound of distribution x_0 . Generally the former possibility is preferred because more credible information is available about the coefficient of skewness, which better characterises the overall distribution of the population (particularly of large populations) compared to the lower or upper bounds.

The probability density function and distribution function of the general three parameter lognormal distribution may be obtained from well known normal distribution using modified (transformed) standardised variable u' obtained from the original standardised random variable $u = (x - \mu x) / \sigma x$ as

$$u' = \frac{\ln\left(\left|u + \frac{1}{c}\right|\right) + \ln\left(c\sqrt{1 + c^2}\right)}{\sqrt{\ln(1 + c^2)}}$$
(3.8)

where (as above) $u = (x-\mu\chi)/\sigma_X$ denotes the original standardised variable. The probability density function $\phi_{LN,U}(u') = \phi_{LN,X}(x)$ of the lognormal distribution are then given as

$$\varphi_{\text{LN},U}(\mathbf{u}') = \frac{\varphi(u)}{\left(\left|u + \frac{1}{c}\right|\right)\sqrt{\ln(1 + c^2)}}$$
(3.9)

$$\Phi_{LN,X}(x) = \Phi_{LN,U}(u') = \Phi(u)$$
 (3.10)

where $\varphi(u)$ and $\Phi(u)$ denote the probability density and distribution function of the standardised normal variable.

A special case is the popular lognormal distribution with a lower bound at zero ($x_0 = 0$), which like the normal distribution, depends on two parameters only – the mean μ_X and the standard deviation σ_X (symbolically it is denoted LN(μ , σ)). In such a case it follows from equations (3.5) that the coefficient *c* is equal to the coefficient of variation V_X . It further follows from equation (3.6) that the skewness ω_X of the lognormal distribution with a lower bound at zero is given by the value of the coefficient of variation V_X as

$$\omega_X = 3V_X + V_X^3 \qquad (3.11)$$

Thus the lognormal distribution with the lower bound at zero ($x_0 = 0$) always has a positive skewness, which may have relatively high value (greater than 0,5); e.g. for the coefficient of variation equal to 0,30 a coefficient of skewness $V_x = 0.927$ obtained from relation (3.11). Applications of the lognormal distribution with the lower limit at zero ($x_0 = 0$) can thus lead to unrealistic theoretical models (usually underestimating the occurrence of negative and overestimating the occurrence of positive deviations from the mean), particularly for higher values of coefficient of variation V_X . Although the occurrence of negative values can also be undesirable (unrealistic for most mechanical quantities), it is usually negligible from a practical point of view.

Example 3.1.

Reinforcement cover layer of a reinforced concrete cross-section X has a mean $\mu = 25$ mm and standard deviation $\sigma = 10$ mm. The probability density function $\varphi(x)$ for a normal distribution and for a lognormal distribution with a lower limit at zero is shown in Figure 3.2.

It follows from Figure 3.2 that the normal distribution leads to occurrence of negative values of the reinforcement cover layer, which obviously does not correspond to reality. On the other hand, the lognormal distribution with lower limit at zero overestimates the occurrence of positive deviations of the cover layer, which may not be realistic either and can further lead to unfavourable influences on the strength of the cross-section. The overestimation of occurrence of extreme positive deviations corresponds to a high skewness $\omega = 1,36$ of the lognormal distribution, which follows from equation (3.11). The available experimental data on the concrete cover indicate that the skewness of the distribution is around $\omega \approx 0.5$, in most cases $\omega < 1,0$.

Figure 3.2. Probability density function for the concrete cover

The lognormal distribution is widely applied in the theory of reliability. It is used as a model for various types of random variables describing some loads (self-weight of some materials), mechanical properties (strengths) as well as geometrical data (inner and outer dimensions of cross-sections). It can be used for general asymmetric random variables with both positive and negative skewness. The lognormal distribution with lower limit at zero ($x_0 = 0$) is very often used for description of mechanical properties (strengths) of various materials (concrete, steel, masonry).

3.3 Gamma distribution

Another popular type of one-side limited distribution is the type III Pearson distribution. Its detailed description is e.g. in the book [13]. A special case of the type III Pearson distribution with lower limit at zero is the gamma distribution. The probability density function of this important distribution is dependent on two parameters only: on the mean μ and standard deviation σ . To simplify the notation two auxiliary parameters λ and k are often used

$$\varphi(x) = \frac{\lambda^k x^{k-1} \exp(-\lambda x)}{\Gamma(k)}, \quad \lambda = \frac{\mu}{\sigma^2}, \quad k = \left(\frac{\mu}{\sigma}\right)^2$$
(3.12)

 $\Gamma(k)$ is the gamma function of parameter k. For the moment parameters of the gamma distribution it holds that

$$\mu = \frac{k}{\lambda}, \sigma = \frac{\sqrt{k}}{\lambda}, \omega = \frac{2}{\sqrt{k}} = \frac{2\sigma}{\mu} = 2V$$
(3.13)

The curve is bell shaped for k > 1, i.e. for skewness $\omega < 2$ (in the inverse case it is a decreasing function of x). For $k \to \infty$, the gamma distribution approaches the normal distribution with parameters μ and σ .

The gamma distribution is applied similarly as the lognormal distribution with lower bound at zero. However, it varies from the lognormal distribution by its skewness, which is equal to twice the coefficient of variation ($\omega = 2V$) and is thus lower than the skewness of lognormal distribution, which is more than 50% higher (according to equation (3.11) it is $\omega_{\chi} = 3V_{\chi} + V_{\chi}^3$). That is the reason why the gamma distribution is more convenient for describing some geometrical quantities and variable action that do not have a great skewness.

Figure 3.3. Histogram and theoretical models for concrete cover of reinforcement

Example 3.2.

A sample of the size n = 157 experimental results of concrete cover of reinforcement measurements has these characteristics: m = 26,8 mm, s = 11,1 mm and v = 0,42. It is a relatively large sample, which can be used for the assessed skewness (furthermore a long-term experience is available). A histogram of the obtained values and theoretical models of normal distribution, lognormal distribution with origin at zero, gamma distribution and beta distribution are shown in Figure 3.3, with help of which the appropriateness of the individual models can be considered.

According to Figure 3.3 it seems that the gamma distribution describes the histogram of obtained results better than the normal and lognormal distribution. But also the both-side limited beta distribution (described in the following Section 3.4) seems to be an appropriate model. However, to choose an appropriate theoretical model for describing variables of interest is a complicated task, which can be treated in theoretical way. Information about some methods of mathematical statistics (about the so-called goodness of fit tests) can be found in the textbook [4] and in specialised literature [12, 13]. In this book some practical aspects and procedures will be indicated only.

3.4 Beta distribution

An interesting type of distribution is the so-called beta distribution (also called Pearson's type I curve), which is defined on a both-side limited interval $\langle a, b \rangle$ (but this interval can be arbitrarily extended and the distribution then approaches the normal distribution). Generally it is dependent on four parameters and it is used mainly in those cases when it is evident that the domain of the random variable is limited on both sides (some actions and geometrical data, e.g. weight of a subway car, fire load intensity, concrete cover of reinforcement in a reinforced concrete cross-section). The principal difficulty in practical application is the need to estimate all the four parameters, for which credible data may not be available.

The beta distribution is usually written in the form

$$\varphi(x) = \frac{(x-a)^{c-1}(x-b)^{d-1}}{B(c,d)(b-a)^{c+d-1}}$$
(3.14)

For the lower and upper limit of distribution it holds

$$a = \mu - c g \sigma, b = \mu + d g \sigma, g = \sqrt{\frac{c + d + 1}{cd}}$$
(3.15)

where g is an auxiliary parameter. From equations (3.15), relations for parameters c and d can be derived

$$c = \frac{\mu - a}{b - a} \left(\frac{(\mu - a)(b - \mu)}{\sigma^2} - 1 \right), \ d = \frac{b - \mu}{b - a} \left(\frac{(\mu - a)(b - \mu)}{\sigma^2} - 1 \right)$$
(3.16)

For the moment parameters of the beta distribution it holds that

$$\mu = \frac{a + (b - a)c}{(c + d)}, \ \sigma = \frac{(b - a)}{(cg + dg)}$$
(3.17)

$$\omega = \frac{2g(d-c)}{(c+d+2)}, \ \varepsilon = \frac{3g^2(2(c+d)^2 + cd(c+d-6))}{(c+d+2)(c+d+3)} - 3$$
(3.18)

Note that skewness ω and kurtosis ε are dependent only on the parameters c and d (they are independent of the limits a and b). That is why the parameters c and d are called shape parameters. In practical applications the distribution is used for c > 1 and d > 1 (otherwise the curve is J or U shaped), for c = d = 1 it becomes a uniform distribution, for c = d = 2 it is the so-called parabolic distribution on the interval $\langle a, b \rangle$. When c = d, the curve is symmetric around the mean. When $d \to \infty$, the curve becomes the type III Pearson distribution (see Section 3.3). If $c = d \to \infty$, it approaches the normal distribution. Depending

on the shape parameters c and d the beta distribution thus covers various special types of distributions. The location of the distribution is given by parameters a and b.

The beta distribution can be defined in various ways. If the parameters a, b, c and d are given, then the moment parameters μ , σ , ω and ε can be assess using equations (3.17) to (3.18). In practical applications however, two other combinations of input parameters are often applied:

- The input parameters are μ , σ , a and b. The remaining parameters c and d can 1. be assessed from equations (3.16), the parameters ω and ε from equations (3.18).
- The input parameters are μ , σ , ω and one of the limits *a* (for $\omega > 0$) or *b* (for ω 2
- < 0); the parameters b (or a), c and d can be assessed using equations (3.16) to (3.17).

In practical applications the distribution with lower limit a = 0 is often used. It can be shown that in such a case the beta distribution is defined if $\omega \leq 2V$

where the coefficient of variation $V = \sigma / \mu$. For $\omega = 2V$ the curve becomes the type III Pearson distribution (see Section 3.3). Therefore if the input parameters are the mean μ , standard deviation σ and skewness $\omega \leq 2V$, the beta distribution with the lower limit at zero (a = 0) is fully described. The upper limit b of the beta distribution with the lower limit at zero follows from the relation (3.15)

$$b = \frac{\mu(c+d)}{c} = \frac{\mu(1+V(2+\omega V))}{(2V-\omega)}$$
(3.20)

In equation (3.20) the parameters c and d are substituted by the following expressions

$$c = -\frac{\omega}{2V} \frac{(2V - \omega)^2 - (4 + \omega^2)}{(V\omega + 2)^2 - (4 + \omega^2)}$$
(3.21)

$$d = \frac{\omega}{2} \frac{(2V - \omega)^2 - (4 + \omega^2)}{(V\omega + 2)^2 - (4 + \omega^2)} \frac{2 + \omega V}{\omega - 2V}$$
(3.22)

which follow from general equations (3.16) to (3.18) for a = 0.

Example 3.3.

Given the mean μ = 25 mm, standard deviation 10 mm (V = 0,40) and skewness $\omega = 0.5$, assess the parameters of a beta distribution with the lower bound at zero (a = 0) for a reinforcement cover layer. Equation (3.19) is satisfied (0,5 < 2 × 0,4). From equations (3.21) and (3.22) it follows that

$$c = -\frac{0.5}{2 \times 0.4} \frac{(2 \times 0.4 - 0.5)^2 - (4 + 0.5^2)}{(0.4 \times 0.5 + 2)^2 - (4 + 0.5^2)} = 4,407$$
$$d = \frac{0.5}{2} \frac{(2 \times 0.4 - 0.5)^2 - (4 + 0.5^2)}{(0.4 \times 0.5 + 2)^2 - (4 + 0.5^2)} \frac{2 + 0.5 \times 0.4}{0.5 - 2 \times 0.4} = 12,927$$

The upper bound of the distribution b follows from equation (3.20) that

$$b = \frac{25 \times (4,407 + 12,927)}{4,407} = 98,325$$

The beta distribution having the assessed parameters is shown in Figure 3.4 together with a corresponding normal, lognormal and Gamma distribution with the lower bound at zero and the same mean μ and standard deviation σ .

Figure 3.4 further shows that the normal distribution (skewness $\omega = 0$) leads to the occurrence of negative values, which may not correspond to the real conditions for the reinforcement cover layer. According to equation (3.11) the lognormal distribution with lower limit at zero has skewness $\omega = 1,264$, which does not correspond to experimental results and leads to an overestimation of the occurrence of positive deviations (which may further lead to unfavourable consequences in the reliability analysis of the reinforced concrete element).

The gamma distribution has, according to equation (3.13), a skewness $\omega = 2V = 0.8$, which is closer to the experimental value 0.5. The most convenient seems to be the beta distribution having the skewness $\omega = 0.5$ corresponding exactly to the experimental results.

Concrete cover x [mm]

Figure 3.4. Normal, Lognormal, Gamma and Beta distributions for the concrete cover layer of reinforcement in a reinforced concrete element

It should be mentioned that mathematical statistics offers a number of "goodness of fit tests" for evaluation of fitness of a distribution as a theoretical model for obtained experimental results (see for example documents [4, 12, 13] and a number recently developed ISO standards). The above discussion can therefore be supplemented by statistical tests. On the other hand it is essential to remark that goodness of fit tests very often fail and do not lead to an unambiguous result. In such a case the selection of a convenient model depends on the character of the basic variable, on available experience and on common experience.

3.5 Gumbel and other distributions of extreme values

The extreme values (maximal or minimal) in a population of a certain size are random variables and their distribution is very important in the theory of structural reliability. Three types of extreme values distribution denoted as types I, II and III are usually covered in the

specialised literature. Each of the types has two versions – one for the distribution of minimal values, the second for maximal values distribution. All these types of distribution have a simple exponential shape and are convenient to work with. We will describe in detail the type I extreme value distribution, which is commonly called the Gumbel distribution. Description of other types of distribution can be found in textbook [12,13] and in specialised literature [15, 16, 17, 18, 19].

The distribution function for the type I maximal values distribution (Gumbel distribution of maximum values) has the form

$$\Phi(\mathbf{x}) = \exp(-\exp(-\mathbf{c}(\mathbf{x} - \mathbf{x}_{\text{mod}}))) \tag{3.23}$$

It is a distribution defined on an infinite interval, which depends on two parameters: on mode x_{mod} and parameter c > 0. By differentiating the distribution function we obtain the probability density function in the form

$$p(x) = c \exp(-c (x - x_{mod}) - \exp(-c(x - x_{mod})))$$
(3.24)

Both the parameters x_{mod} , c of the Gumbel distribution can be assessed from the mean μ and standard deviation σ

$$x_{\text{mod}} = \mu - 0.577 \sqrt{\frac{6\sigma}{\pi}}$$
(3.25)

$$c = \frac{\pi}{\sqrt{6\sigma}}$$
(3.26)

Skewness and kurtosis of the distribution are constant: $\omega = 1,14$, $\varepsilon = 2,4$.

An important characteristic of the Gumbel distribution is the simple transformation of the distribution function $\Phi(x)$ of the original distribution to the distribution function $\Phi_M(x)$ describing the maxima of populations that are N times greater than the original population with mean μ and standard deviation σ . If the individual multiples of the original population are mutually independent, then it holds for the distribution function $\Phi_M(x)$

$$\Phi_{N}(x) = (\Phi(x))^{N}$$
(3.27)

By substitution of equation (3.23) into equation (3.27) we obtain the distribution function $\Phi_M(x)$ as

$$\Phi_N(x) = \exp(-\exp(-c(x - x_{mod} - \ln N/c)))$$
 (3.28)

so the mean μ_N and standard deviation σ_N of maxima of populations that are N times greater than the original population are

$$\mu_N = \mu + \ln N/c = \mu + 0.78 \ln N \sigma, \sigma_N = \sigma \qquad (3.29)$$

Thus the standard deviation σ_N of the greater population is equal to the standard deviation of the original population, $\sigma_N = \sigma$, but the mean μ_N is greater than the original value μ by 0.78 lnN/c.

Example 3.4.

One-year maxima of wind pressure are described by Gumbel distribution with a mean $\mu_{\rm l} = 0.35 \ {\rm kN/m^2}$, $\sigma_{\rm l} = 0.06 \ {\rm kN/m^2}$. The corresponding parameters of the 50-year maximum value distribution, i.e. parameters μ_{50} and σ_{50} , follow from equation (3.29)

$$\mu_{50} = 0.35 + 0.78 \times \ln (50 \times 0.06) = 0.53 \text{ kN/m}^2$$
, $\sigma_{50} = 0.06 \text{ kN/m}^2$

Figure 3.5 shows both distributions of one-year and fifty-year maxima of wind pressure described by the Gumbel distribution.

Figure 3.5. Distribution of maximum wind pressure over the periods of 1 year and 50 years.

The distribution function of type I minimal values distribution (Gumbel distribution of minimum values) has the form

$$\Phi(x) = 1 - \exp(-exp(-c(x_{mod} - x)))$$
(3.30)

This distribution is symmetrical to the distribution of maximal values given by equation (3.23). It is therefore also defined on an open interval and depends on two parameters: on mode x_{mod} and parameter c > 0. By differentiating the distribution function we obtain the probability density function in the form

$$\varphi(x) = c \exp(-c (x_{mod} - x) - \exp(-c (x_{mod} - x))) \qquad (3.31)$$

Both these parameters can be assessed from the mean μ and standard deviation σ

$$x_{mod} = \mu + 0.577 \sqrt{\frac{6\sigma}{\pi}}$$
 (3.32)

$$c = \frac{\pi}{\sqrt{6\sigma}}$$
(3.33)

The probability density function of the minimum values is symmetrical to the shape of maximal values relative to mode x_{mod} , as it is apparent from Figure 3.6.

Figure 3.6. The Gumbel distribution of the minimum and maximum values.

In a similar way the type II distribution, the so-called Fréchet distribution, and type III distribution, the so-called Weibull distribution, are defined. All the three types of distribution complement each other with respect to the possible values of skewness ω . Each type covers a certain area of skewnesses, as indicated in Figure 3.7.

Figure 3.7. Types of distribution of extreme values versus the skewness ω .

The extreme values distributions of the type I and II are often used to describe random variables depending on the maximal values of populations (for example climatic actions). The type II is particularly convenient for variables with high skewness $\omega > 1,14$ (for example for flood discharge that have $\omega \sim 2$). The extreme values distribution of the type III is usually applied for random variables depending on the minimal values of populations (e.g. strength and other material properties) assuming that $\omega > -1,14$.

3.6 Function of random variables

In general many variables entering reliability analysis of structures may be considered as a function of basic variables $X = [X_1, X_2, ..., X_n]$. For example resistance R or load effect E may be given as a function

$$Z = F(X)$$
 (3.34)

where $X = [X_1, X_2, ..., X_n]$ denotes a vector of basic variables. Then the resulting variable Z is a random variable and its characteristics may be derived from relevant characteristics of basic variables $X = [X_1, X_2, ..., X_n]$. Usually three moment parameters, the mean μ , standard deviation σ and skewness ω , are used for a first assessment of the resulting variable Z. Experience shows that using derived moment parameters (μ , σ and ω) three parameter lognormal distribution provides satisfactory approximation of Z. However, the software VaP [9] applies a more accurate approximation based on four moment parameters (μ , σ , ω and kurtosis ε).

Appendix 2 of this Chapter provides approximate expressions for fundamental functions of two basic variables that can be used in assessment of failure probability in case of small number of basic variables.

4 ESTIMATION OF FRACTILES

4.1 Fractile of a theoretical model

One of the most important keywords of the theory of structural reliability is the term fractile of a random variable X (or of its probability distribution), sometimes called also quantile. Appendix 3 to this Chapter provides a review of formulas for determining fractiles of most important theoretical models of continuous random variables.

Let us recall the definition of the fractile. For a given probability p, the p-fractile x_p denotes such a value of the random variable X, that values less than or equal to x_p occur just with the probability p. If $\Phi(x)$ is distribution function of the random variable X, then it follows from equation (2.6) that the value $\Phi(x_p)$ of the distribution function $\Phi(x)$ at the point x_p is equal to the probability p

$$P(X \le x_p) = \Phi(x_p) = p \qquad (4.1)$$

The same definition holds also for standardised random variable U (given by transformation equation (3.2)) when in equation (4.1) U is substituted for X and u_p is substituted for x_p . Fractiles u_p of standardised random variables U are commonly available in tables. Figure 4.1 illustrates the definition of the fractile described by equation (4.1) for standardised random variable U; it shows distribution function $\Phi(u)$, probability density function $\phi(u)$, probability p (approximately equal to 0.05) and fractile u_p for normal standardised distribution U.

In general fractile x_p of the original random variable X may be calculated using tables for u_p available for standardised random variables U with a relevant type of distribution. It follows from transformation (3.2) that the fractile x_p may be determined from the fractile of the standardised random variable u_p (found in available tables) using relationship

$$x_p = \mu + u_p \sigma = \mu (1 + u_p V)$$
 (4.2)

where μ denotes the mean, σ the standard deviation and V the coefficient of variation of the observed variable X_{\cdot}

If the probability p < 0.5, then the value x_p is called the lower fractile, for p > 0.5 the x_p is called the upper fractile. Figure 4.2 shows the lower and upper fractiles u_p of a

standardized random variable U with normal distribution for probabilities p = 0.05 and 0.95, and thus denoted $u_{0.05}$ and $u_{0.95}$.

The fractile corresponding to the probability p = 0.05, is usually applied for an assessment of the characteristic value of material properties (strength of concrete, yield point of steel, masonry strength). However, the design values of dominant variables are fractiles, which correspond to a lower probability ($p \approx 0.001$), design values of variables which are not dominant are fractiles corresponding to a greater probability ($p \approx 0.10$).

Figure 4.1. Definition of the fractile for the standardised random variable U.

The values u_p of the lower fractile of a standardized random variable U having normal distribution for selected probabilities p are given in Table 4.1. Considering the symmetry of the normal distribution, the values u_p of the upper fractile can be assessed from Table 4.1 by substituting of p by 1 - p and by changing the sign of values u_p (from negative to positive).

Detailed tables can be found e.g. in books [12, 13], in the International Standard ISO 12491 [4] and in specialised literature [18, 19, 20].

For a standardized random variable with a general three-parametric lognormal distribution the value u_p of the standardized random variable is dependent on skewness ω . The values u_p for selected skewnesses ω and probabilities p are given in Table 4.2.

Table 4.1. Fractile up of a standardized random variable with normal distribution												
р	10-7	10-0	10-5	10 ⁻⁴	0,001	0,010	0,050	0,100	0,200	0,500		
up	-5,199	-4,753	-4,265	-3,719	-3,091	-2,327	-1,645	-1,282	-0,841	0,000		

Figure 4.2. The lower and upper fractiles of a standardized random variable $U\,{\rm having}$ normal distribution

In the case of a lognormal distribution with lower limit at zero, which is described in section 3.2, it is possible to calculate the fractile from the value of fractile of a standardized random variable with normal distribution using the relation

$$x_{p} = \frac{\mu}{\sqrt{1 + V^{2}}} \exp\left(u_{norm, p} \sqrt{\ln(1 + V^{2})}\right) \qquad (4.3)$$

where $u_{norm,p}$ is the fractile of a standardized random variable with normal distribution, μ is the mean and V the coefficient of variation of the variable X. An approximation of relation (4.3) is often applied in the form

$$x_p \cong \mu \exp(u_{\text{norm},p} \times V)$$
 (4.4)

whose accuracy is fully satisfactory for the coefficient of variations V < 0.2, but it is commonly used for greater V as well.

	Probability p													
ω	10 ⁻⁴	10-3	0,01	0,05	0,10	0,20	0,50	0,80	0,90	0,95	0,99	1-10 ⁻³	1-10 ⁻⁴	
-2,0	-9,52	-6,24	-3,52	-1,89	-1,24	-0,61	0,24	0,77	0,97	1,89	1,28	1,42	1,49	
-1,5	-7,97	-5,51	-3,31	-1,89	-1,29	-0,68	0,20	0,81	1,04	1,21	1,45	1,65	1,77	
-1,0	-6,40	-4,70	-3,03	-1,85	-1,32	-0,74	0,15	0,84	1,13	1,34	1,68	1,99	2,19	
-0,5	-4,94	-3,86	-2,70	-1,77	-1,32	-0,80	0,08	0,85	1,21	1,49	1,98	2,46	2,81	
0,0	-3,72	-3,09	-2,33	-1,65	-1,28	-0,84	0,00	0,84	1,28	1,65	2,33	3,09	3,72	
0,5	-2,81	-2,46	-1,98	-1,49	-1,21	-0,85	-0,08	0,80	1,32	1,77	2,70	3,86	4,94	
1,0	-2,19	-1,99	-1,68	-1,34	-1,13	-0,84	-0,15	0.74	1,32	1,85	3,03	4,70	6,40	
1,5	-1,77	-1,65	-1,45	-1,21	-1,04	-0,81	-0,20	0,68	1,29	1,89	3,31	5,51	7,97	
2,0	-1,49	-1,42	-1,28	-1,89	-0,97	-0,77	-0,24	0,61	1,24	1,89	3,52	6,24	9,52	

Table 4.2. Fractile u_p of a standardized random variable having lognormal distribution

Example 4.1.

Let us assess the fractile x_p of a normal and lognormal distribution with lower limit at zero for p = 0,001; 0,01; 0,05 and 0,10, if V = 0,3. We know that the lognormal distribution with lower limit at zero has, in this case, a positive skewness $\omega = 0,927$ (according to equation (3.11)), which needs to be known for interpolation in Table 4.2. The resultant values x_p are given in the following table in the form of dimensionless coefficients x_p/μ (expressing the ratio of the fractile to the mean), which were for normal and for lognormal distribution assessed by different ways.

		Probal	oility p	
Coefficient x_p/μ for	0,001	0,010	0,050	0,100
normal distribution, equation (4.2) and Table 4.1	0,073	0,302	0,506	0,615
lognormal distribution, equation (4.2) and Table 4.2	0,385	0,483	0,591	0,658
lognormal distribution, equation (4.3) and Table 4.1	0,387	0,484	0,591	0,657
lognormal distribution, equation (4.4) and Table 4.1	0,396	0,496	0,610	0,681

Table of coefficients x_p/μ shows the expected difference between the fractiles of normal and of lognormal distributions. The lower fractile of normal distribution is significantly lower than the corresponding fractile of lognormal distribution particularly for small probabilities p. The table also shows that the approximate formula (4.4) provides satisfactory results for computation of fractile of lognormal distribution (the error will decrease with decreasing coefficient of variation V).

The fractile of gamma distribution can be calculated from the available tables for type III Pearson distribution [12, 13]. To calculate the fractile of beta distribution, the available tables of incomplete beta function may be used or it can be assessed by integration of probability density function according to definition (4.1). However, when it is needed (and

neither appropriate tables nor software product are available), the fractile of beta distribution, which is bell shaped (for shape parameters it holds that c > 2 and d > 2), may be assessed approximately from equation (4.2) using table values of u_p for a standardized lognormal distribution, having the same skewness ω as the beta distribution. Analogical procedure may be used for other types of distribution, too.

The fractile x_p can be easily assessed for Gumbel distribution. From equation (3.23) and definition (4.1) follows an explicit relation for x_p directly dependent on the probability p

$$x_p = x_{mod} - \frac{1}{c} \ln(-\ln(p)) \cong \mu - (0.45 + 0.78 \ln(-\ln(p)))\sigma$$
 (4.5)

where mode x_{mod} and parameter c are substituted by relations (3.25) and (3.26).

Example 4.2.

Let us determine the upper fractile of wind pressure from Example 3.4 described by Gumbel distribution when probability p = 0.98 is considered. It is known from Example 3.5 that for the one-year maximum $\mu_l = 0.35 \text{ kN/m}^2$, $\sigma_l = 0.06 \text{ kN/m}^2$. The fractile $x_{0.98}$ for such parameters follows from equation (4.5)

$$x_{0.98} = 0.35 - (0.45 + 0.78 \times \ln(-\ln(0.98))) \times 0.06 = 0.51 \text{ kN/m2}$$

The corresponding fractile of the maximum for a period of 50 years (as shown in Example 3.4 that $\mu_{50} = 0.53 \text{ kN/m}^2$, $\sigma_{50} = 0.06 \text{ kN/m}^2$) is

 $x_{0.98} = 0.53 - (0.45 + 0.78 \times \ln(-\ln(0.98))) \times 0.06 = 0.69 \text{ kN/m}^2$

Simple mathematical procedures, including the computation of fractile, are some of the reasons of the wide popularity of Gumbel, distribution which is frequently used for random variables describing climatic and other variable actions that are defined by maximal values for a given period (e.g. during one year).

However, theoretical models are not always known in practical applications. In civil engineering, the fractile of a random variable (e.g. strength of a new or unknown material) has to be assessed from a limited sample, the size n of which may be very small (sometimes less than 10). Furthermore, considered random variables may have a high variability (the coefficient of variation is sometimes greater than 0,30). Assessment of the fractile of a population from a sample is then a serious problem, which is in mathematical statistics solved by various methods of estimation theory. In the following three basic methods are shortly described: the coverage method, the prediction method and the Bayesian method for estimation of the population fractile.

4.2 Coverage method of fractile estimation

The keyword of the coverage method for the fractile estimation from a sample of a limited size *n* is the confidence γ , i.e. the probability (usually 0,75, 0,90 or 0,95) that the estimated value covers the population fractile (that is why the method is called coverage method). The estimator $x_{p,cover}$ of the lower fractile x_p is determined by the coverage method in such a way that

$$(x_{p,cover} < x_p) = \gamma$$
 (4.6)

Thus, the estimator $x_{p,cover}$ is lower (on the safe side of the lower fractile) than the unknown fractile x_p with the probability (confidence) γ .

Ρ

In the following summary practical formulas are given without being derived, assuming that the population has a general three-parameter distribution characterized by skewness ω , known from previous experience. In addition it is assumed that the mean μ of the population is never known in advance and the estimation is based by the average *m* obtained from a sample. The standard deviation σ of the population is assumed to be either known (and then it is used) or unknown (and then the sample standard deviation *s* or the coefficient of variation *V* is used instead of σ).

If the standard deviation σ of the population is known from previous experience, the estimator $x_{p,cover}$ of the lower p-fractile is given as

$$\kappa_{p,cover} = m - \kappa_p \sigma \qquad (4.7)$$

If the standard deviation of the population σ is unknown, then the sample standard deviation s is considered

$$p_{p,cover} = m - k_p s \qquad (4.8)$$

Coefficients of estimation $\kappa_p = \kappa (\omega, p, \gamma, n)$ and $k_p = k (\omega, p, \gamma, n)$ depend on skewness ω , on probability p corresponding to the fractile x_p that is estimated, on confidence γ and on the size n of the population. The knowledge of confidence γ that the estimator $x_{p,cover}$ will be on the safe side of the real value is the greatest advantage of the classic coverage method. In documents [1, 2] the confidence γ is recommended by the value 0,75. In the cases of increased reliability demands when a detailed reliability analysis is required, a higher value of confidence, say of 0,95, may be more appropriate [4].

4.3 Prediction method of fractile estimation

According to the prediction method [4] the lower *p*-fractile x_p is estimated by the socalled prediction limit $x_{p,pred}$ for which it holds that a new value x_{n+1} randomly drawn from the population will be lower than the estimator $x_{p,pred}$ only with the probability *p*, i.e. it holds that

$$P(x_{n+1} < x_{p,pred}) = p$$
 (4.9)

It can be shown that for growing *n* the estimator $x_{p,pred}$ defined in this way is asymptotically approaching the unknown fractile x_p . It can be also shown that the estimator $x_{p,pred}$ corresponds approximately to the estimator obtained by the coverage method $x_{p,cover}$ for confidence $\gamma = 0.75$ [4].

If the standard deviation σ of the population is known, then the lower *p*-fractile is estimated by the value $x_{p,pmd}$ according to the relation

$$x_{p,\text{pred}} = m + u_p (1/n + 1)^{1/2} \sigma$$
 (4.10)

where $u_p = u(\omega, p)$ is the *p*-fractile of a standardized lognormal distribution having the skewness ω . If the distribution of the variable X is normal then u_p is the *p*-fractile of standardised normal distribution.

If, however, the standard deviation of population is unknown, then the sample standard deviation s must be considered instead of σ

$$x_{p,pred} = m + t_p (1/n + 1)^{1/2} s$$
 (4.11)

where $t_p = t(\omega, p, \nu)$ is the *p*-fractile of the generalized Student's *t*-distribution for $\nu = n - 1$ degrees of freedom, which has a skewness ω (information about Student's distribution and about the number of degrees of freedom may be obtained from the textbook [12,13] and from other specialised sources [18, 19]). If the distribution of the variable X is normal, then u_p is the *p*-fractile of standardised normal distribution Student's *t*-distribution for $\nu = n - 1$ degrees of freedom.

4.4 Coefficients of the coverage and prediction methods

The coverage and prediction methods represent two basic procedures of estimation of the population's fractile from the available sample of a limited size *n*. If the standard deviation of the population σ is known, then equations (4.7) and (4.10) are applied in which two analogical coefficients κ_p and $-u_p(1/n + 1)^{1/2}$ appear. Both of these coefficients depend on the sample size *n*, coefficient κ_p of the coverage method depends furthermore on the confidence γ . Table 4.3 shows the coefficients κ_p and $-u_p(1/n + 1)^{1/2}$ for p = 0.05 and selected values of *n* and γ when normal distribution of the population is assumed.

Table 4.3. Coefficients κ_p and $-u_p(1/n + 1)^{1/2}$ from equations (4.7) and (4.10) for p = 0.05 and normal distribution of the population (when σ is known).

					Saı	nple siz	ze n			
Coeff	icient	3	4	5	6	8	10	20	30	8
	$\gamma = 0,75$	2,03	1,98	1,95	1,92	1,88	1,86	1,79	1,77	1,64
κ_p	$\gamma = 0,90$	2,39	2,29	2,22	2,17	2,10	2,05	1,93	1,88	1,64
	γ=0,95	2,60	2,47	2,38	2,32	2,23	2,17	2,01	1,95	1,64
$-u_{p}(1)$	$(n+1)^{1/2}$	1,89	1,83	1,80	1,77	1,74	1,72	1,68	1,67	1,64

It is evident from Table 4.3 that with the growing sample size *n* both the coefficients approach the value 1,64, which holds for a theoretical model of the normal distribution (see Table 4.1). The coefficient κ_p of the coverage method increases with increasing confidence γ . Note that for confidence $\gamma = 0,75$ it holds that $\kappa_p \simeq -u_p(1/n + 1)^{1/2}$. Thus, for $\gamma = 0,75$ the coverage method leads approximately to the same estimator as the prediction method, $x_{p,cover} \simeq x_{p,pred}$ (for greater confidence $\gamma > 0,75$ the $x_{p,cover} < x_{p,pred}$).

If the standard deviation of the population σ is unknown, equations (4.8) and (4.11) are applied in which two analogical coefficients k_p and $-t_p(1/n + 1)^{1/2}$ appear. Both of these coefficients depend again on the sample size *n*, coefficient k_p of the coverage method depends furthermore on the confidence γ . Table 4.4 and Figure 4.3 show the values of coefficients k_p and $-t_p(1/n + 1)^{1/2}$ for p = 0.05 and selected values of *n* and γ when normal distribution of the population is assumed.

Table 4.4. Coefficients k_p and $-t_p(1/n + 1)^{1/2}$ from equations (4.8) and (4.11) for p = 0.05 and normal distribution of the population (when σ is unknown).

Coeff	icient	Sample size n											
	_	3	4	5	6	8	10	20	30	8			
	$\gamma = 0,75$	3,15	2,68	2,46	2,34	2,19	2,10	1,93	1,87	1,64			
k_p	$\gamma = 0,90$	5,31	3,96	3,40	3,09	2,75	2,57	2,21	2,08	1,64			
	$\gamma = 0,95$	7,66	5,14	4,20	3,71	3,19	2,91	2,40	2,22	1,64			
$-t_{p}(1/$	$(n+1)^{1/2}$	3,37	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64			

It is obvious from Table 4.4 and Figure 4.3 that with increasing sample size *n* both the coefficients k_p and $-t_p(1/n + 1)^{1/2}$ approach the value 1,64, which is valid for a theoretical model of the normal distribution (see Table 4.1). In case of the coverage method, the coefficient k_p increases with increasing confidence γ and the relevant estimators $x_{p,\text{cover}}$ of the lower fractile are decreases (on the safe side). Note, that as in the case of known standard deviation σ both coefficients are approximately equal, $k_p \cong -t_p(1/n + 1)^{1/2}$ and for confidence γ

= 0,75 the coverage method leads to approximately the same estimator, $x_{p,cover} \cong x_{p,pred}$, as the prediction method.

Figure 4.3. Coefficients k_p and $-t_p(1/n + 1)^{1/2}$ for p = 0.05 and normal distribution of the population (when σ is unknown).

Also the skewness (asymmetry) of the population ω may affect significantly the estimator of the population's fractile. Tables 4.5 and 4.6 show the coefficients k_p from equation (4.8) for three value of the skewness $\omega = -1,0,0,0$ and 1,0, probability p = 0.05 and confidence $\gamma = 0.75$ (Table 4.5) and $\gamma = 0.95$ (Table 4.6). Values of the coefficients from Table 4.6 are shown in Figure 4.4.

Table 4.5. Coefficient k_p from equation (4.8) for p = 0.05, $\gamma = 0.75$ and lognormal distribution having skewness ω (when σ is not known).

		Sample size n											
Skewness	3	4	5	6	8	10	20	30	8				
$\omega = -1,00$	4,31	3,58	3,22	3,00	2,76	2,63	2,33	2,23	1,85				
$\omega = 0,00$	3,15	2,68	2,46	2,34	2,19	2,10	1,93	1,87	1,64				
<i>ω</i> = 1,00	2,46	2,12	1,95	1,86	1,75	1,68	1,56	1,51	1,34				

Table 4.6. Coefficient k_p from equation (4.8) for p = 0.05, $\gamma = 0.95$ and lognormal distribution having the skewness ω (when σ is not known).

		Sample size n												
Skewness	3	4	5	6	8	10	20	30						
ω = -1,00	10,9	7,00	5,83	5,03	4,32	3,73	3,05	2,79	1,85					
ω = 0,00	7,66	5,14	4,20	3,71	3,19	2,91	2,40	2,22	1,64					
ω = 1,00	5,88	3,91	3,18	2,82	2,44	2,25	1,88	1,77	1,34					

It is evident from Tables 4.5 and 4.6 that as the sample size n increases, the coefficients k_p approach the values of u_p , which are valid for theoretical model of lognormal distribution (see Table 4.2). Thus, the influence of the skewness ω does not disappear when n

 $\rightarrow\infty,$ and it is especially significant for small samples and greater confidence γ = 0.95 (see Figure 4.4).

Figure 4.4. Coefficient k_p for p = 0.05 and confidence $\gamma = 0.95$ (when σ is unknown).

A similar dependence on skewness may be observed in the case of the generalized Student's *t*-distribution for which the fractiles t_p are given in Table 4.7. These values t_p are applied in the prediction method using formula (4.11) and further in the Bayes' method. That is why Table 4.7 gives directly the values of fractiles t_p depending on the number of degrees of freedom ν . Similarly as in Tables 4.5 and 4.6 the probability p = 0.05 and three skewnesses $\omega = -1.0$; 0.0 and 1.0 are considered.

Table 4.7. Coefficient $-t_p$ from equation (4.11) for p = 0.05 and lognormal distribution with skewness ω (when σ is unknown).

		Coefficient – t_p for $\nu = n - 1$ degrees of freedom													
Skewness	3	$3 4 5 6 8 10 20 30 \infty$													
ω = -1,00	2,65	2,40	2,27	2,19	2,19	2,04	1,94	1,91	1,85						
ω = 0,00	2,35	2,13	2,02	1,94	1,86	1,81	1,72	1,70	1,64						
ω = 1,00	1,92	1,74	1,64	1,59	1,52	1,48	1,41	1,38	1,34						

It follows from Table 4.7 that as the size of the sample *n* increases, the values of t_p approach the theoretical values of u_p , which are valid for a model of lognormal distribution with the appropriate skewness and are given in Table 4.2. Therefore, the influence of the skewness again (as in the case of k_p) does not disappear for $n \to \infty$, but it is especially significant for small samples (it increases with decreasing sample size *n*).

Example 4.3.

A sample of the size n = 5 measurements of strength of concrete has the mean m = 29,2 MPa and the standard deviation s = 4,6 MPa. We assume that the population is normal and that its standard deviation σ is unknown. The characteristic strength $f_{ck} = x_p$, for p = 0,05 is firstly assessed by the coverage method. If the confidence is $\gamma = 0,75$, then it follows from equation (4.8) and Table 4.4 that

 $x_{p,cover} = 29,2 - 2,46 \times 4,6 = 17,9$ MPa

If the higher confidence $\gamma = 0.95$ is required, then

$$x_{p,cover} = 29,2 - 4,20 \times 4,6 = 9,9$$
 MPa

If the prediction method is used, then it follows from equation (4.11) and Table 4.4 that

$$x_{p,pred} = 29,2 - 2,33 \times 4,6 = 18,5 \text{ MPa}$$

The characteristic strength obtained by the prediction method is only a little greater than the value according to the coverage method with confidence $\gamma = 0.75$. However, if a higher confidence $\gamma = 0.95$ is required, then the prediction method leads to a value which is almost twice greater than the value obtained by the coverage method.

If the sample comes from a population with lognormal distribution and a positive skewness $\omega = 1$, then the coverage method with the confidence $\gamma = 0.75$ (Table 4.5) gives an estimator

$$x_{p,cover} = 29,2 - 1,95 \times 4,6 = 20,2 \text{ MPa}$$

which is a value by 13% greater than when the skewness is zero.

Similarly it follows for the prediction method from equation (4.11) and Table 4.7 that

$$x_{p,pred} = 29, 2 - 1, 74 \times \sqrt{\frac{1}{5} + 1} \times 4, 6 = 20, 4 \text{ MPa}$$

where the value $t_p = -1.74$ is given in Table 4.7 for $\omega = 1.0$ and $\nu = 5 - 1 = 4$. The resulting strength is in this case by 10% greater than the value, which corresponds to the normal distribution ($\omega = 0$).

4.5 Bayes' method of fractile estimation

If previous experience is available for a random variable (e.g. in the case of a long term production) it is possible to use so-called Bayes' method, which generally follows the idea of updating of probabilities described in section 2.5. The Bayes' method of fractile estimation is described here without deriving any important relations. More detailed description is given in documents ISO [3, 4] and other specialised literature [12, 13].

Assume that a sample of size n with an average m and standard deviation s is available. Note that degrees of freedom $\nu = n - 1$. Besides an average m' and sample standard deviation s' assessed from an unknown sample (of an unknown size n' and degrees of freedom ν') are available from previous experience. It is, however, assumed that both the samples come from the same population having the mean μ and the standard deviation σ . If this important assumption is valid, then the two samples may be combined. This could be a simple task if the individual values of the previous set were known, but that is not the case. However, the Bayes' method must be used.

Parameters of the combined sample are generally given by relations [3, 4]

$$n'' = n + n'$$

$$\nu'' = \nu + \nu' - 1 \text{ if } n' \ge 1, \ \nu'' = \nu + \nu' \text{ if } n' = 0 \qquad (4.12)$$

$$m'' = (mn + m'n') / n''$$

$$s''^{2} = (\nu s^{2} + \nu' s'^{2} + nm^{2} + n'm'^{2} - n''m''^{2}) / \nu''$$

The unknown sample size n' may be assessed using the relations for coefficients of variation of the mean and standard deviation $V(\mu)$ and $V(\sigma)$, (parameters μ and σ are considered as random variables in the Bayes' concept) for which it holds [3, 4]

$$n' = [s' / (m' V(\mu))]^2, v' = 1 / (2 V(\sigma)^2)$$
 (4.13)

Both the unknown variables n' and ν' may be assessed independently (generally $\nu' \neq n'$ - 1), depending on previous experience with the degree of uncertainty of estimator of the mean μ and standard deviation σ of the population.

The next step of the procedure applies the prediction method of fractile estimation. The Bayes' estimator $x_{p,\text{Bayes}}$ of the fractile is given by relationship similar to equation (4.11) for prediction estimator, assuming that the standard deviation σ of the population is not known

$$x_{p,\text{Bayes}} = m'' + t_p'' (1/n''+1)^{1/2} s''$$

(4.14)

where $t_p = t_p(\omega, p, \nu'')$ is a fractile of the generalised Student's *t*-distribution having an appropriate skewness ω for ν'' degrees of freedom (that is generally different from the value n''-1).

If the Bayes' method is applied for an assessment of material strength, the advantage may be taken of the fact that the long-term variability is constant. Then the uncertainty of an assessment of σ and the value $v(\sigma)$ are relatively small, variables v' assessed according to equation (4.13) and v'' assessed according to equation (4.12) are relatively high. This factor may lead to a favourable decrease of the value t_p and to augmentation of the estimator of the lower fractile of x_p according to equation (4.14). On the other hand, uncertainties in assessment of the mean μ and the variable $v(\mu)$ are usually great and previous information may not affect significantly the resulting values n'' and m''.

If no previous information is available, then $n' = \nu' = 0$ and the resulting characteristics m'', n'', s'', ν'' equal the sample characteristics m, n, s, ν . In this case the Bayes' method is reduced to the prediction method and equation (4.14) becomes equation (4.11); if σ is known equation (4.10) is used. This particular form of the Bayes' method, when no previous information is available, is considered in Eurocode EN 1990 [1] and international standards ISO [2, 3].

Example 4.4.

If previous experience was available for Example 4.3, the Bayes' method could be used. Suppose that the information is m' = 30.1 MPa, $V(\mu) = 0.50$, s' = 4.4 MPa, $V(\sigma) = 0.28$. It follows from equation (4.13) that

$$n' = \left(\frac{4,4}{30,1}\frac{1}{0,50}\right)^2 < 1, \nu' = \frac{1}{2 \times 0,28^2} \approx 6$$

Further on these values are thus considered: n' = 0 and $\nu' = 6$. Because $\nu = n - 1 = 4$, it follows from equation (4.12)

$$''=5$$
, $\nu''=10$, $m''=29,2$ MPa, $s''=4,5$ MPa.

n'' = 5, $\nu'' = 10$, m'' = 29,2 M From equation (4.14) the fractile estimate follows as

$$x_{p,Bayes} = 29, 2 - 1, 81 \times \sqrt{\frac{1}{5} + 1} \times 4, 5 = 20, 3 \text{ MPa}$$

where the value $t_{\mu}^{\nu} = 1.81$ is given in Table 4.7 for $\omega = 0$ and $\nu'' = 10$. The resulting strength is thus greater (by 10%) than the value obtained by the prediction method.

If the population has lognormal distribution with skewness $\omega = 1$, then it follows from equation (4.14) considering the value $t_p^{"} = 1,48$ given in Table 4.7 that

$$x_{p,Bayes} = 29, 2 - 1, 48 \times \sqrt{\frac{1}{5} + 1} \times 4, 5 = 21,9$$
 MPa

which is a value by 8% greater than the Bayes' estimator for $\omega = 0$.

Examples 4.3 and 4.4 clearly showed that the estimator of characteristic strength (fractile with probability p = 0.05) assessed from one sample may be expected within a broad range (in Examples 4.3 and 4.4 from 9.9 MPa to 21.9 MPa), depending on the applied method, required confidence, previous information and on assumptions concerning the population. Besides the alternatives considered in Examples 4.3 and 4.4, knowledge of the standard deviation σ of the population and assumption of the negative skewness (in the case of some materials of high strength) may be applied as well.

Even more significant differences in the resulting values may occur when design values of strength are being estimated, i.e. when fractiles corresponding to a small probability ($p \approx 0,001$) are considered. However, a direct estimation of such fractiles from a limited sample of the population is recommended only in such cases when a sufficient amount of information on the relevant random variable is available. In such cases, it is necessary to proceed carefully and, if possible, in co-operation with experts in the field of mathematical statistics.

4.6 Estimation of fractiles according to Eurocodes

Eurocode EN 1990 [1] gives in tables the coefficients for estimation of a fractile of a random variable with normal distribution (asymmetric distributions thus are not considered for the fractile estimation) from a sample for three probabilities p = 0.05 (for characteristic value x_k), p = 0.001 (for design value x_d of the dominant variable) and for p = 0.10 (for design value x_d of the non-dominating variable). As already mentioned above, the characteristic values x_k and design values x_d are defined as fractiles x_p , which correspond to a given probability p (application of these variables in structural design is explained in the following chapters).

For characteristic values of material properties a fractile corresponding to probability p = 0.05 is usually considered (however, for variables which describe variable loads the probability p is usually less than that), i.e. it holds

$$(X < x_k) = 0.05$$
 (4.15)

For design values x_d of dominating variables it holds approximately that p = 0,001 (or another value close to this one), i.e. it holds

$$P(X < x_d) = 0,001$$
 (4.16)

Finally, for design values x_d of non-dominant variables it holds approximately that p = 0, 1, i.e. it holds that

P

$$(X < x_d) = 0,1$$
 (4.17)

A more detailed description of the dominating and non-dominating variables is given in Handbook 1.

The following Tables 4.8 and 4.10, which give the required coefficients for estimation of variables x_k and x_d according to equations (4.15) to (4.17), are adopted from the document [1] in its original version, even though the first Table 4.8 partially overlaps with the precedent Tables 4.3 and 4.4. Tables 4.8 and 4.9 are taken from the final version of EN 1990 [1]. Let us remark that all the coefficients in [1] are denoted by the symbol k_n , which is used also in the following tables.

Table 4.8. Coefficients kn for a 5% characteristic value (see Tables 4.4 and 4.3).

					Sam	ple siz	te n				
Coefficient	1	2	3	4	5	6	8	10	20	30	00
$-u_p(1/n+1)^{1/2}$, σ known	2,31	2,01	1,89	1,83	1,80	1,77	1,74	1,72	1,68	1,67	1,64
$-t_n(1/n+1)^{1/2}$, σ unknown	-	-	3,37	2,63	2,33	2,18	2,00	1,92	1,76	1,73	1,64

Table 4.9. Coefficients k_n for a design value x_d of a dominating variable, $P(X < x_d) = 0,001$.

					Sam	ple siz	ze n				
Coefficient	1	2	3	4	5	6	8	10	20	30	00
$-u_p(1/n+1)^{1/2}$, σ known	4,36	3,77	3,56	3,44	3,37	3,33	3,27	3,23	3,16	3,13	3,09
$-t_p(1/n+1)^{1/2}$, σ unknown	-	-	-	11,4	7,85	6,36	5,07	4,51	3,64	3,44	3,09

Table 4.10. Coefficients k_n for a design value x_d of a non-dominating variable, $P(X < x_d) = 0, 1$.

		Sample size n											
Coefficient	1	2	3	4	5	6	8	10	20	30	00		
$-u_p(1/n+1)^{1/2}$, σ known	1,81	1,57	1,48	1,43	1,40	1,38	1,36	1,34	1,31	1,30	1,28		
$-t_p(1/n+1)^{1/2}$, σ unknown	-	3,77	2,18	1,83	1,68	1,56	1,51	1,45	1,36	1,33	1,28		

The assumption concerning knowledge of the standard deviation σ is replaced (inaccurately) in the document by the assumption that the coefficient of variation V is known. The original version of Table 4.9 [1] gives for the sample size of ∞ a wrong value of 3,04 for the coefficients (correct is 3,09). Let us also note that when knowledge of the standard deviation σ is assumed, Tables 4.8 to 4.10 give values of coefficients already for the sample size n = 1. Application of these values is, however, associated with significant statistical uncertainties and therefore a minimum sample size n = 3 is recommended here. Note, that Table 4.10 (for 0,1 fractile) is included only in the prestandard ENV 1991-1 and not in the final document EN 1990 [1].

Statistical methods for determining the characteristic and design values of resistance variables are provided in Annex D "Design assisted by testing" of EN 1990 [1]. Relevant basic variables describing structural resistance are described by lognormal distribution. The whole procedure is described in detail in the Annex D. Attached MATHCAD sheet "Mod_est.mcd" can be used to evaluate experimental data using the whole procedure. It is provided with explanatory notes and needs no additional information.

In order to simplify computational procedure the assessment coefficients given in Tables 4.8 and 4.9 are in the attached MATHCAD sheet "Mod_est.mcd" expressed using built-in distribution function of normal and Student *t*- distribution. In accordance with the principles of Annex D in [1] single variable and model representation of a resistance variable R are distinguished. The results shown in the attached sheet indicates that both approaches lead to similar results.

REFERENCES

- [1] EN 1990 Eurocode Basis of structural design. CEN 2002.
- [2] EN 1991-1-1 Eurocode 1 Actions on structures. Part 1-1 General actions. Densities, selfweight, imposed loads for buildings, CEN 2002.
- [3] ISO 2394 General principles on reliability for structures, ISO Geneve, Switzerland 1998.
- [4] ISO 12491 Statistical methods for quality control of building materials and components. Geneve, Switzerland 1997.
- [5] ISO 13822. Basis for design of structures Assessment of existing structures, ISO 2003.
- [6] JCSS: Background documentation, Part 1 of EC 1 Basis of design, 1996.
- [7] JCSS: Probabilistic model code. JCSS working materials, http://www.jcss.ethz.ch/, 2001.
- [8] Gulvanessian, H. Calgaro, J.-A. Holický, M.: Designer's Guide to EN 1990, Eurocode: Basis of Structural Design. Thomas Telford, London, 2002, ISBN: 07277 3011 8, 192 pp.
- [9] VaP, Variable Processor, version 1.6. ETH Zurich, 1997.
- [10] COMREL, version 7.10, Reliability Consulting Programs, RCP MUNICH, 1999.
- [11] CodeCal, Excel sheet developed by JCSS, http://www.jcss.ethz.ch/, 2001.
- [12] J.R. Benjamin and C.A. Cornell, Probability concept and decision for civil engineers. McGraw Hill New York, 1970.
- [13] A.H.-S. Ang and W.H. Tang, Probabilistic concepts in engineering planning and design. John Wiley and Sons, New York, 1975.
- [14] CIRIA Report 63, Rationalization of safety and serviceability factors in structural codes. London, 1975.
- [15] P.T. Christensen, M. Baker, Structural Reliability Theory and its Applications. Springer-Verlag, Berlin 1982.
- [16] H.O. Madsen, S. Krenk and N.C. Lind, Methods of Structural Safety. Prentice-Hall, Inc., Englewood Cliffs, 1986.
- [17] R.E. Melchers, Structural Reliability. Analysis and Prediction. John Wiley & Sons, New York 1987.
- [18] M.E. Haar, Reliability Based Design in Civil Engineering. McGraw-Hill, 1987
- [19] M. Tichý, Applied methods of structural reliability. Kluwer academic publishers 1993.
- [20] O. Dietlevsen, H.O. Madsen, Structural Reliability Methods. John Wiley & Sons, New York 1996.
- [21] H. Gulvanessian, M. Holický, Designers' Handbook to Eurocode 1, Thomas Telford, London, 1996.
- [22] J. Schneider, Introduction to Safety and Reliability of Structures. IABSE, Zürich, 1997.

Distribution	Probability density function	Domain	Perspectors	Moon	Standard	Stowness
Distribution,	Probability density function		rarameters	wean	Standard	Skewness
Destangular		017	-	μ	deviation o	ω
Rectangular	1/(b-a)	$a \le x \le b$	a	(a + b)/2	$(b - a)/\sqrt{12}$	0
R(a,b)			b > a			0
Normal	$1 = \frac{1}{(x-\mu)^2}$	$-\infty \le x \le$	μ	μ	σ	U U
Ν (μ,σ)	$\frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{1}{\sigma}\right)\right]$	80	σ			
Lognormal,		$x_0 \le x < \infty$	$x_0 = \mu - c\sigma$	$x_0 + c\sigma$	σ	$3c+c^3$
general	1 $\left(\left(\left\ x - x_0 \right\ c \right\ \sqrt{1 + c^2} \right)^2 \right) \left(\left\ x - x_0 \right\ c \right\ \sqrt{1 + c^2} \right)^2 \right)$	pro $\omega > 0$,	σ			
$LN(\mu, \sigma, \omega)$	$\frac{1}{ r-r } \frac{1}{ r-r } \frac{1}$	-∞ <x≤x0< td=""><td>с</td><td></td><td></td><td></td></x≤x0<>	с			
$LN(\mu, \sigma, x_0)$	$\mu - x_{0} \sqrt{m(1+c)} \sqrt{2n} \qquad (()) / ())$	pro $\omega < 0$				
Lognormal,		$0 \le x \le \infty$	и	и	Vu	3V+V ⁶
zero origin	1 $\left(\left(1 + \frac{x}{\sqrt{1+V^2}} \right)^2 \right)^2 \left(2 + \frac{x}{\sqrt{1+V^2}} \right)^2$		$V = \sigma/\mu$	<i>(</i>	- /-	
$LN(\mu,\sigma)$	$\frac{1}{r \ln(1 + W^2)} \sqrt{2\pi} \exp \left[- \ln \frac{1}{r} + \frac{1}{r} \right] / (2 \ln(1 + V^2))$					
	$x\sqrt{m(1+v)}\sqrt{2\pi}$ ((μ))					
Gamma	$\frac{1}{2k} \frac{k}{k} = \frac{1}{2k} \frac{1}{k} $	$0 \le x < \infty$	$\lambda = \mu / \sigma^2$	k /λ	$\sqrt{k/\lambda}$	$2 / \sqrt{k}$
$Gam(\mu, \sigma)$	$\lambda x \exp(-\lambda x)/1(\kappa)$		$k = (\mu / \sigma)^2$			
Beta,		$a \leq x \leq b$	a	a +	(b-a)	2g(d-c)
general	$(x-a)^{c-1}(b-x)^{d-1}$		b >a		$c\sigma + d\sigma$	$\frac{1}{c+d+2}$
$Beta(\mu,\sigma,\omega,b)$	$\frac{B(c,d)(b-a)^{c+d-1}}{B(c,d)(b-a)^{c+d-1}}$		<i>c</i> ≥1	$+\frac{(b-a)c}{a}$	cg ug	$\sqrt{a+d+1}$
$Beta(\mu,\sigma,a,b)$	D(c,u)(v-u)		<i>d</i> ≥1	c + d	$g = \sqrt{\frac{c+d+1}{c+d+1}}$	$g = \sqrt{\frac{c+a+1}{cd}}$
					V cd	1 64
Beta,			b >0	b c	Ь	2g(d-c)
zero origin	$(x)^{c-1}(b-x)^{d-1}$	$0 \le x \le b$	$c \ge 1$	c + d	$c\sigma + d\sigma$	$\frac{c+d+2}{c+d+2}$,
$Beta(\mu,\sigma,\omega)$	$B(c, d) b^{c+d-1}$		<i>d</i> ≥1		58.48	$\sqrt{c+d+1}$
$Beta(\mu,\sigma,b)$	2(0,0)0				$g = \sqrt{\frac{c+a+1}{c+a+1}}$	$g = \sqrt{\frac{c+a+1}{cd}}$
					- V ca	1 64
Gumbel		$-\infty \le x \le$	$x_{mod} = \mu -$	xmod+	$\pi/(\sqrt{6c})$	1,14
$Gum(\mu, \sigma)$	$c \exp(-c(x-x_{mod}) - \exp(-c(x-x_{mod})))$	00	0,577√6σ/π	0,577/c		
			$c = \pi / (\sqrt{6}\sigma)$			

Appendix 1 - Probabilistic models of basic variables

A - 31

Appendix 2 - Statistical parameters of functions of random variables

Function Z	The mean μ_Z	Standard deviation σ_Z	Skewness <i>oz</i>
aX+b	$a\mu_X + b$	$ a \sigma_{\chi}$	ω_X pro $\omega > 0$, - ω_X pro $\omega < 0$
X ² *)	$\mu_{\chi}^2 + \sigma_{\chi}^2$	$2\sigma_{\chi}\left(\mu_{\chi}^{2}+\mu_{\chi}\sigma_{\chi}\omega_{\chi}\right)^{1/2}$	$\frac{8\mu_x^3\sigma_x^3\left(\omega_x+3V_x\right)}{\sigma_x^3}$
$\frac{1}{X}$ *)	$\frac{1+V_{\chi}^2-V_{\chi}^3\alpha_{\chi}}{\mu_{\chi}}$	$\frac{\left(\mathcal{V}_{\chi}^{2}-2\mathcal{V}_{\chi}^{3}\omega_{\chi}\right)^{1/2}}{\mu_{\chi}}$	$\frac{6V_X^4 - V_X^3\omega_X}{\mu_X^3\sigma_Z^3}$
aX+bY+c	$a\mu x + b\mu y + c$	$\left(a^2\sigma_{\chi}^2+b^2\sigma_{\chi}^2\right)^{1/2}$	$\frac{a^3 \sigma_x^3 \omega_x + b^3 \sigma_y^3 \omega_y}{\sigma_z^3}$
X+ Y	$\mu \mathbf{x} + \mu \mathbf{y}$	$\left(\sigma_{\chi}^{2}+\sigma_{\gamma}^{2} ight)^{l/2}$	$\frac{\sigma_x^3 \omega_x + \sigma_y^3 \omega_y}{\sigma_z^3}$
X - Y	$\mu_X - \mu_Y$	$\left(\sigma_{\chi}^{2}+\sigma_{\gamma}^{2} ight)^{1/2}$	$\frac{\sigma_x^3 \omega_x - \sigma_y^3 \omega_y}{\sigma_z^3}$
XY *)	$\mu_X \mu_Y$	$\mu \alpha \mu \gamma \left(V_{\chi}^2 + V_{\gamma}^2 + V_{\chi}^2 V_{\gamma}^2 \right)^{1/2}$	$\frac{\mu_x^3 \mu_y^3 \left(\mathcal{V}_x^3 \omega_x + \mathcal{V}_y^3 \omega_y + 6 \mathcal{V}_x^2 \mathcal{V}_y^2 \right)}{\sigma_z^3}$
x *)	$\frac{\mu_{\chi}\left(1+V_{\gamma}^{2}-V_{\gamma}^{3}\varpi_{\gamma}\right)}{\mu_{\gamma}}$	$\frac{\mu_{\chi} \left(V_{\chi}^2 + V_{\gamma}^2 - 2 V_{\gamma}^3 \omega_{\gamma}\right)^{1/2}}{\mu_{\gamma}}$	$\frac{\mu_{\chi}^{3}\left(\mathcal{V}_{\chi}^{3}\varpi_{\chi}-\mathcal{V}_{\gamma}^{3}\varpi_{\gamma}+6\mathcal{V}_{\gamma}^{4}+6\mathcal{V}_{\chi}^{2}\mathcal{V}_{\gamma}^{2}\right)}{\mu_{\gamma}^{3}\sigma_{\chi}^{3}}$

*) Expressions for parameters of marked functions are approximations only.

Appendix 3 - Fractile of a random variable x_p , $P(X \le x_p) = \Phi(x_p) = p$								
Distribution,	Domain of	Fractile x_p of the theoretical model	Estimate using coverage		Estimate using prediction method			
notation	X	$x_p =$	method					
			σ known	σ unknown	σ known	σ unknown		
Rectangular R(a,b)	$a \le x \le b$	a + p (b - a)	-	-	-			
Normal	$-\infty \le x \le \infty$	$\mu + u_p \sigma = \mu (1 + u_p V)$	$m - \kappa_p \sigma$	$m - k_p s$	$m+u_p(1/n+1)^{1/2} \sigma$	$m+t_p(1/n+1)^{1/2} s$		
N(μ,σ)		up from Table 4.1	κ_p from	kp from	up from Table 4.1	$t_p(1/n+1)^{1/2}$ from		
			Table 4.3	Table 4.4		Table 4.4		
Lognormal, general	$x_0 \le x < \infty$ pro $\omega > 0$,	$u = \frac{\sigma}{\sigma} \left(1 - \frac{1}{\sigma} \exp(sign(\sigma)u + \sqrt{\ln(1+c^2)}) \right) =$	$m - \kappa_p \sigma$	$m - k_p s$	$m+u_{p}(1/n+1)^{1/2} \sigma$	$m+t_p(1/n+1)^{1/2} s$		
$LN(\mu, \sigma, \omega)$	$-\infty < x \leq x_0$	$\int_{-\infty}^{\infty} c \left(1 - \sqrt{1 + c^2} \exp(\operatorname{Sign}(\alpha) n_p \sqrt{m(1 + c^2)}) \right)^{-1}$	<i>ĸ</i> ₂ not given	k_p from 4.5	u_p from Table 4.2	tp from Table 4.7		
LN(μ,σ,x ₀)	pro ∞<0	$= x_0 + \frac{\mu + x_0}{\sqrt{1 + c^2}} \exp\left(\operatorname{sign}(\alpha)u_p \sqrt{\ln(1 + c^2)}\right)$		and 4.6				
		u_p for normal distribution or						
		$\mu + u_p \sigma = \mu (1 + u_p V)$						
		u_p for lognormal distribution from Table 4.2						
Lognormal, zero origin	$0 \le x \le \infty$	$\frac{\mu}{\sqrt{1-v^2}} \exp\left(u_p \sqrt{\ln(1+V^2)}\right) \cong$	$m - \kappa_p \sigma$	$m - k_p s$	$m+u_p(1/n+1)^{1/2} \sigma$	$m+t_p(1/n+1)^{1/2}$ s		
$LN(\mu, \sigma)$		$\sqrt{1+V^2}$	κ _p not given	k _p from	<i>u_p</i> from Table 4.2	t _p from Table 4.7		
		$\cong \mu \exp(u_p \times V)$ for $V < 0,2$		and 4.6				
		u_p for normal distribution or						
		$\mu + u_p \sigma = \mu (1 + u_p V)$						
		and u_p for lognormal distribution from Table 4.2						
Gumbel Gum (μ, σ)	$-\infty \le x \le \infty$	$x_{\rm mod} - \frac{1}{c} \ln(-\ln(p)) \cong$	Fractile can be estimated using the parameter lognormal distribution as an approximation					
		$\cong \mu - (0,45 + 0,78 \ln(-\ln(p))) \sigma$						

A - 33

ПРИЛОЖЕНИЕ В. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ ОЦЕНКИ КОНСТРУКТИВНОЙ НАДЕЖНОСТИ II

Милан Холики ¹ и Тон Враувенвельдер ² и Анхель Артега ³

¹ Институт Клокнера, Чешский технический университет, Прага, Чехия

² Делфтский технический университет, Организация прикладных научных исследований в сфере строительства, Нидерланды

³ Научно-исследовательский институт строительства «Эдуардо Торроха» («CSIC»), Мадрид, Испания

Краткая информация

При помощи основных принципов теории надежности, описанных в главе II, разработаны элементарные методы оценки конструктивной надежности I, практические процедуры оценки частных коэффициентов основных переменных, которые используются для определения общей постоянной и переменной нагрузки. Для иллюстрации описанных методов вычисления приведен ряд численных примеров с использованием таблиц Excel, MATHCAD и MATHEMATICA.

1. Введение

1.1 Справочные материалы

Основные понятия и методы оценки конструктивной надежности достаточно полно описаны в нескольких национальных стандартах, в новом Европейском документе EN 1990 [1] и Международном стандарте ISO 2394 [2]. Дополнительная информация представлена в справочном издании, выпущенном «Объединенным комитетом надежности конструкций» (JCSS) [3] и недавно опубликованном Руководстве по использованию стандарта EN 1990 [4]. Рекомендации по применению вероятностных методов оценки конструктивной надежности можно найти в рабочих материалах, предоставленных «Объединенным комитетом надежности конструкций» (JCSS) [5] и в соответствующих изданиях, перечисленных в списке литературы (см. [4] и [5]). Рекомендации по строительным системам сооружений и надежности, зависящей от времени, представлены в изданиях [6] и [7].

1.2 Основные принципы

В теории конструктивной надежности все основные переменные рассматриваются как случайные величины, имеющие соответствующий тип распределения вероятности. Для рассмотрения воздействий, свойств материалов и геометрических параметров следует использовать различные типы распределения. Кроме того, следует учитывать неопределенности моделей, связанные с воздействиями, а также модели несущей способности. Описание ранее разработанных моделей основных переменных и методов вероятностной оценки представлено в документах «Объединенного комитета надежности конструкций» (JCSS) [5].

Настоящее приложение является прямым дополнением к Главе II «Элементарные методы конструктивной надежности», являющейся частью основного текста, и на которую часто ссылаются авторы.

2. Расчетная точка

Теоретические принципы могут использоваться для оценки важнейших параметров надежности (частных коэффициентов, коэффициентов ослабления, комбинационных правил, и т.д.), которые применяются в рабочих стандартах, в том числе и Еврокодах, и основываются на методе частных коэффициентов. Для того чтобы объяснить, каким образом теоретические выводы трансформируются в проектные рекомендации по аналогии с представленным в Приложении С стандарта EN 1990 [1] используется графическое описание случайных переменных Е и R, а также соответствующая функция предельного состояния (2) R - E = 0 из главы II.

На рис. 1 (см. [1]) показаны случайные переменные Е и R в двумерной диаграмме, где горизонтальная ось представляет собой дробь R/σ_R , а вертикальная ось – дробь E/σ_E . Предполагается, что величины Е и R являются независимыми переменными, имеющими нормальное распределение. Как указано в примерах 5 и 6 главы II, такое предположение, возможно, не является абсолютно справедливым, и должно рассматриваться только в качестве приближения. Однако, как правило, любое распределение может быть преобразовано в нормальное (по меньшей мере, в некоторой области значений), и, поэтому, случайные переменные Е и R, показанные на рис. 1., могут рассматриваться как преобразованные переменные, изначально имеющие другой тип распределения.

На рис. 1 также показана функция предельного состояния (граница разрушения) R - E = 0, которая соответствует выражению (2) из главы II, измененному в соответствии с системой координат, используемой на рис. 1. Обратите внимание на то, что граница разрушения будет расположена по диагонали к главным осям координат, если стандартные отклонения переменных R и E имеют одно и то же значение, т.е. $\sigma_R = \sigma_E$. Область безопасных значений переменных R и E (желаемая), удовлетворяющая требованию (1) из главы II,

находится ниже границы разрушения, а область значений, соответствующих разрушению (нежелательная), находится выше границы R-E = 0.

Функция предельного состояния Расчетная точка

Рис. 1. Расчетная точка R

При определении степени конструктивной надежности любую точку на границе разрушения R - E = 0 можно рассматривать в качестве критической (расчетной) точки (что становится очевидным при изучении развития методов расчета конструкции с течением времени, описанных в предыдущей главе настоящего Руководства 2). Однако, было установлено (см., например, [5]), что лучшим из возможных вариантов (обеспечивающим достоверность и инвариантность решения различных форм функции предельных состояний и различных основных переменных) является точка (R_d , E_d), наиболее приближенная к среднему значению (μ_E , μ_R), указанному на рис. 1. Исходя из этого, из рис. 1 следует, что координаты расчетных точек (R_d , E_d) могут быть записаны в следующем виде:

$$R_{d} = \mu_{R} - \alpha_{R}\beta\sigma_{R} (1)$$
$$E_{d} = \mu_{E} - \alpha_{E}\beta\sigma_{E} (2)$$

Величины α_E и α_R обозначают в этом случае так называемые коэффициенты чувствительности переменных *E* и *R*. Знаки «минус» в уравнениях (1) и (2) являются условно принятыми обозначениями в документах CEN [1] и ISO [2].

Из рис. 1 следует, что уравнения для коэффициентов чувствительности α_E и α_R (направляющий косинус границы разрушения) могут быть записаны следующим образом:

$$\alpha_{E} = -\sigma_{E} / \sqrt{\sigma_{E}^{2} + \sigma_{R}^{2}}$$
(3)
$$\alpha_{R} = \sigma_{R} / \sqrt{\sigma_{E}^{2}} + \sigma_{R}^{2}$$
(4)

В Еврокодах приближенная оценка этих коэффициентов чувствительности как постоянных величин далее принимается в следующем виде:

$$\alpha_R = \sigma_R / \sqrt{\sigma_E^2 + \sigma_R^2} = 0.8$$
 (5)
$$\alpha_E = -\sigma_E / \sqrt{\sigma_E^2 + \sigma_R^2} = -0.7$$
 (6)

Правильность такой приближенной оценки ограничивается условием, при котором отношение стандартных отклонений находится в интервале следующих значений:

$$0,16 < \sigma_{_E} / \sigma_{_R} < 7,6$$
 (7)

Если данное условие не выполняется, то коэффициент чувствительности $\alpha = \pm 1,0$ рекомендуется использовать для переменной, имеющей большее стандартное отклонение. Следует отметить, что это упрощение

делается для перестраховки, поскольку сумма квадратов направляющих косинусов должна равняться единице.

Таким образом, расчетные значения E_d и R_d переменных E и R определяются как квантили нормального распределения:

$$P(E > E_d) = \Phi_U(+\alpha_E \beta) = \Phi_U(-0.7\beta)$$
(8)
$$P(R > R_d) = \Phi_U(-\alpha_R \beta) = \Phi_U(-0.8\beta)$$
(9)

где $\Phi_U(u)$ обозначает стандартное нормальное распределение. Если $\beta = 3,8$, то расчетные значения e_d и r_d являются квантилями приблизительно соответствующими вероятностям, равным 0,999 и 0,001. Следует обратить внимание на то, что в уравнении (9) использовано свойство симметричности нормального распределения, т.е. соотношение $1 - \Phi_U(+\alpha_E\beta) = \Phi_u(-\alpha_E\beta)$.

В случаях, когда модель нагрузки или несущей способности включает в себя несколько основных переменных (другие нагрузки, большее количество материалов, геометрические параметры), уравнения (8) и (9) содержат только ведущие переменные (наиболее важные для рассматриваемого условия надежности). Для других (сопутствующих) переменных требования относительно расчетных величин снижаются, и модель включает в себя следующее:

$$P(E > E_d) = \Phi_U(+0.4\alpha_E\beta) = \Phi_U(-0.28\beta) (10)$$
$$P(R < R_d) = \Phi_U(-0.4\alpha_R\beta) = \Phi_U(-0.32\beta) (11)$$

При $\beta = 3,8$, расчетные значения сопутствующих (не ведущих) переменных являются квантилями, приблизительно соответствующими вероятностям, равным 0,9 и 0,1.

Расчетные значения соответствуют верхнему (для воздействий) или нижнему значениям квантили (для несущей способности), которые относятся к определенным уровням вероятности – повышенному (воздействия) или не достигнутому (несущая способность). Для ведущих переменных вероятности выражены в виде функции распределения стандартного нормального распределения для значений $u = +\alpha_E \beta$ и $-\alpha_R \beta$, в случае вспомогательных переменных для приведенных значений $u = +0, 4\alpha_E \beta$ и $-0, 4\alpha_R \beta$. Эти вероятности (для нижнего значения квантили приблизительно 0,001 для ведущей и 0,1 для сопутствующей переменных) затем служат для определения расчетных значений даже для тех переменных, которые не имеют нормального распределения. Следует отметить, что в соответствии с общими правилами, когда вероятность соответствует верхнему значению квантили (воздействий) необходимо рассмотрение дополнительных вероятностей (значение которых приближено к единице).

Пример 1.

Расчетные значения E_d и R_d R_d переменных E и R из примера 4 оцениваются, исходя из предположения о том, что индекс надежности $\beta = 3.8$, $\alpha_E = -0.7$, и $\alpha_R = 0.8$. Согласно уравнению (8), к величине E относится следующее:

$$P(E > e_d) = \Phi_U(\alpha_E \beta) = \Phi_U(-2,66) = 0,0039$$

Дополнительная вероятность, поэтому, равна 0,9961, и из уравнения мы получаем следующее:

$$e_d = \mu - (0,45 + 0,78\ln(-\ln(p)))\sigma = 50 - (0,45 + 0,78 \times \ln(-\ln(0,9961))) \times 10 = 88,75$$

Необходимо отметить, что если предполагается нормальное распределение, тогда:

$$e_d = \mu + u_p \sigma = 50 + 2,66 \times 10 = 76,6$$

Согласно уравнению (9), к величине *R* относится следующее:

$$P(R > R_d) = \Phi_U(-\alpha_R \beta) = \Phi_U(-3,04) = 0,0012$$

Для логарифмически нормального распределения со средним значением 100 (единиц) и стандартным отклонением 10 (единиц):

$$R_d \cong \mu \exp(u_{norm, p} \times V) = 100 \times \exp(-3.04 \times 0.10) = 73.79$$

Для нормального распределения мы получаем:

$$R_p = \mu + u_p \sigma = 50 - 3,04 \times 10 = 69,6$$

Очевидно, что в области значений координаты проектной точки $e_d > r_d$, и растяжка не удовлетворяет условию (1) из главы II (из примера 4, представленного в главе II, известно, что β равно лишь 3,09). Чтобы это условие было выполнено, индекс надежности, равный 3,8, а также параметры переменных E и R должны быть изменены.

Прилагаемые таблицы MATHCAD StRod.mcd, DesVRod.mcd могут быть использованы для выполнения всех численных расчетов.

3. Частные коэффициенты

3.1 Свойства материалов

Понятия надежности, описание которых представлено выше, могут быть использованы для оценки частных коэффициентов. В прилагаемом программном пакете MATHCAD GammaRGQ.mcd содержится описание всех методов вычислений, представленных ниже, которые могут использоваться для выполнения дополнительных числовых расчетов.

Согласно стандарту EN 1990 [1] или ISO 2394 [2] частный коэффициент γ_R несущей способности материалов R определяется как отношение его характеристического значения R_k к расчетному значению R_d , которое может быть описано при помощи следующего уравнения:

$$\gamma_{R} = R_{k} / R_{d} (12)$$

В дальнейшем характеристическое значение R_k переменной несущей способности R принимается равным ее значению при 5% квантили [1], [2] и [5].

Если переменная несущей способности *R* (прочность) имеет нормальное распределение, то характеристическое значение *R*_k может быть задано следующим образом:

$$R_{k} = \mu_{R} - 1,645 \times \sigma_{R} = \mu_{R} (1 - 1,645 \times V_{R})$$
(13)

Расчетное значение R_d параметра R может быть определено при помощи выведенного уравнения (22), представленного выше (см. также документы [1] and [2]):

$$R_{d} = \mu_{R} - \alpha_{R} \times \beta \times \sigma_{R} = \mu_{R} - 0.8 \times \beta \times \sigma_{R} = \mu_{R} (1 - 0.8 \times \beta \times V_{R})$$
(14)

В уравнениях (13) и (14) μ_R обозначает среднее значение, а σ_R – стандартное отклонение, V_R – коэффициент вариации, и $\alpha_R = 0.8$ – коэффициент чувствительности переменной R.

Принимая во внимание уравнения (13) и (14), из уравнения (12) следует, что частный коэффициент γ_R для величины R, имеющей нормальное распределение, может быть вычислен следующим образом:

$$\gamma_{R} = (1 - 1.645 \times V_{R}) / (1 - 0.8 \times \beta \times V_{R})$$
(15)

При логарифмически нормальном распределении величины R его характеристическое значение R_k может быть определено с использованием приближенного уравнения (см. [1], [2]):

$$R_k = \mu_R \times \exp(-1.645 \times V_R) (16)$$

Аналогичным образом расчетное значение R_d может быть приближенно выражено следующим уравнением (см.[1], [2]):

$$R_d = \mu_R \times \exp(-\alpha_R \times \beta \times V_R)$$
(17)

Принимая во внимание уравнения (16) и (17), из уравнения (12) следует, что частный коэффициент γ_R для логарифмически нормального распределения может быть вычислен следующим образом:
$$\gamma_{R} = \exp(1 - 1.645 \times V_{R}) / \exp(-\alpha_{R} \times \beta \times V_{R})$$
(18)

На рис. 2 и 3 показано изменение частного коэффициента γ_R свойств материала R с индексом надежности β для выбранных значений коэффициента вариации V_R , представленного для нормального распределения в уравнении (15) (рис. 2), и логарифмически нормального распределения – в уравнении (18) (рис. 3).

Рис.2. Изменение коэффициента γ_R для выбранных коэффициентов вариации V_R =0,05; 0,10; 0,15 и 0,20, и для нормального распределения параметра R.

Как правило, частный коэффициент γ_R увеличивается с ростом индекса надежности β . При нормальном распределении увеличение γ_R является более значительным (рис. 2), чем при логарифмически нормальном распределении (рис. 3). Влияние типа распределения особенно значимо для коэффициентов вариации V_R превышающих 0,10. Следует ожидать заметного влияния типа распределения на теоретическое значение частных коэффициентов также и для других основных переменных, в особенности, относящихся к воздействиям.

3.2 Постоянная нагрузка

Рассмотрим собственный вес G, имеющий нормальное распределение. Аналогично случаю со свойствами материала, когда базовый период времени T используется вместо расчетного срока эксплуатации при про-

верке надежности конструкции, расчетное значение G должно определяться для параметра T, а не параметра T_d . Предполагается, что характеристическое значение G_k величины G определяется как среднее значение μ_G (см. [1], [2] и [5]):

$$G_k = \mu_G$$
 (19)

Расчетное значение G_d задается уравнением (23) из главы II (см. также документы [1], [2]):

$$G_d = \mu_G - \alpha_G \times \beta \times \sigma_G = \mu_G + 0.7 \times \beta \times \sigma_G = \mu_G (1 + 0.7 \times \beta \times V_G)$$
(20)

В уравнении (20) μ_G обозначает среднее значение, а σ_G – стандартное отклонение, V_G – коэффициент вариации, и $\alpha_G = -0,7$ – коэффициент чувствительности G. Частный коэффициент γ_G величины G задается следующим образом (см. [1], [2]):

$$\gamma_G = G_d / G_k$$
(21)

Принимая во внимание уравнения (19) и (20), из уравнения (21) следует, что:

$$\gamma_G = (1 + 0.7 \times \beta \times V_G) (22)$$

На рис. 4 показано изменение частного коэффициента γ_G с индексом надежности β для выбранных значений коэффициента вариации $V_G = 0,05$; 0,10; 0,15 и 0,20. Следует обратить внимание на то, что значение $\gamma_G = 1,35$ (рекомендованное в стандарте EN 1990, см. [1]) приблизительно соответствует индексу надежности $\beta = 3,8$, если коэффициент вариации составляет около 0,1 (рекомендованное в стандарте EN 1990 (см. [1]) значение было позднее увеличено на 5 % для учета неопределенности модели).

При рассмотрении рис. 2,3 и 4 можно сделать вывод, что, как правило, следует ожидать менее значимого изменения с участием β - величин для частного коэффициента собственной массы γ_G , чем для частного коэффициента свойств материалов γ_R .

3.3 Переменная нагрузка

Для определения частных коэффициентов γ_Q для переменных нагрузок Q может использоваться такой же метод, как и для случая постоянной нагрузки G. Исходя из распределения Гумбеля, характеристическое значение (0,98 квантили) может быть задано следующим образом:

$$Q_{k} = \mu_{Q} \left(1 - V_{Q} \left(0,45 + 0,78 \ln(-\ln(0,98)) \right) \right)$$
(23)

Расчетное значение Q_d может быть задано следующим образом:

$$Q_{d} = \mu_{Q} \left(1 - V_{Q} \left(0,45 + 0,78 \ln \left(-\ln \left(\Phi^{-1} \left(-\alpha_{E} \beta \right) \right) \right) \right)$$
(24)

Величина μ_G в уравнениях (23) и (24) обозначает среднее значение, V_Q – коэффициент вариации годовых экстремумов величины Q и $\alpha_G = -0,7$ – коэффициент чувствительности Q. Частный коэффициент γ_Q величины Q может быть задан следующим образом: (см. [1], [2]):

 $\gamma_O = Q_d / Q_k$ (25)

На рис. 5 показано изменение частного коэффициента γ_G с коэффициентами вариации V_Q для выбранных значений β с учетом величины Q, распределенной по Гумбелю. Получается, что для случая переменной нагрузки Q индекс надежности β оказывает значимое влияние на частный коэффициент γ_Q . На следующем ниже рис. 6 показано изменение величины γ_Q с индексом надежности β для выбранных значений коэффициента вариации V_Q , снова с учетом величины Q, распределенной по Гумбелю.

Из рис. 5 и 6 следует, что для индекса надежности β = 3,8 и коэффициента вариации V_Q , не превышающего 0,5, величина частного коэффициента γ_Q не превышает значения, равного 1,3. Однако, коэффициент вариации может при этом превышать значение, равное 0,5 и тогда более адекватным оказывается применение другого типа распределения вероятностей (см. другие главы настоящего Руководства). Поэтому, в стандарте EN 1990 [1] рекомендуется использовать значение величины γ_Q , взятое с запасом, и равное 1,5.

Рис. 5. Изменение величины γ_Q с коэффициентами вариации V_Q для выбранных значений β , с учетом величины Q, распределенной по Гумбелю.

Рис. 5. Изменение величины γ_Q с индексом надежности β , для выбранных значений коэффициента вариации V_Q , с учетом величины Q, распределенной по Гумбелю.

Из рис. 6 следует, что для индекса надежности $\beta \cong 3$ теоретическое значение частного коэффициента γ_Q составляет около 1. Это значение объясняется тем, что характеристическое значение определяется равным 0,98 квантили, и когда $\beta \cong 3$, значение величины Q_k приблизительно равно значению ны Q_d (более подробное объяснение можно получить при рассмотрении уравнений (23) и (4)). В прилагаемых пакетах MATHCAD GammaRGQ.mcd можно легко найти дополнительные числовые расчеты, поскольку эти документы были составлены при помощи всех описанных выше методов вычисления.

4. Общий случай оценки уровня надежности

4.1 Общие положения

В главе II «Элементарные методы оценки конструктивной надежности I» настоящего руководства был представлен пример, называемый основным примером оценки конструктивной надежности. Он является примером, в котором функция предельного состояния может быть представлена только двумя случайными независимыми переменными, обозначающими эффект воздействия и несущую способность. Основной пример оценки конструктивной надежности является очень интересным примером использования понятий надежности, поскольку связан с интуитивными соображениями, и тем, что люди привыкли к представлению о глобальном эффекте воздействия и несущей способности, а также из-за того, что строить простые графические изображения легче только в формате двух измерений.

Однако, к сожалению, только в некоторых случаях эта функция предельного состояния может быть представлена в основном примере, тем самым, сводя задачу оценки степени конструктивной надежности к простому соотношению несущей способности и эффекта воздействия с участием соответствующих переменных. В большинстве случаев для этого понадобится, по крайней мере, еще несколько переменных. В целом, несущая способность является функцией свойств материала (-ов) и размеров конструкции или элемента, и эффекты воздействия зависят от различных приложенных нагрузок, плотности и размеров конструкции. Несущая способность и эффект воздействия даже не всегда могут считаться независимыми, поскольку например, некоторые размеры оказывают влияние как на воздействия, так и на несущую способность. Кроме того, эффекты воздействия могут зависеть от несущей способности конструкции как единого целого (например, в случае динамических воздействий).

Функция предельного состояния может быть задана следующим образом:

 $Z(X_1, X_2, X_3...) = 0$ (26)

или в векторном виде:

Z(X) = 0 (27)

где $X = \{X_1, X_2, X_3...\}$ является вектором случайных переменных, зависящих от времени, определяющим функцию предельного состояния.

В этом случае, также, Z(X) > 0 представляет область безопасных значений, а Z(X) < 0 – область опасных значений. Вероятность разрушения, в этом случае, может быть вычислена по следующей формуле:

$$P_f = P[Z(X) \le 0] = \int \dots \int f_Z(x) dx;$$

Z(X) < 0 (28)

где $f_{z}(x)$ – суммарная плотность распределения вероятности вектора переменных X.

Если все переменные не зависят от времени, во многих случаях мы можем принять это предположение в качестве неплохого приближения. Суммарная плотность распределения вероятности величины X является результатом маргинальной плотности распределения вероятности каждой переменной. Следовательно, уравнение (18) может быть записано следующим образом:

$$P_{f} = P[Z(X) < 0] = \int_{...} \int f_{X1}(x_{1}) f_{X2}(x_{2}) \dots f_{Xn}(x_{n}) dx_{1} dx_{2} \dots dx_{n}$$
$$Z(X) < 0$$
(29)

4.2 Основные переменные

Основные переменные являются именно теми величинами, которые помогают охарактеризовать и описать поведение конструкции и уровень ее безопасности в условиях определенного предельного состояния.

Проектировщик располагает некоторой степенью свободы выбора основных переменных. Как правило, переменными, используемыми для проектирования стандартных конструкций, являются – размеры, вес, нагрузка, прочностные характеристики материалов, и т.д. В целом, рассматриваются независимые основные переменные, поскольку любая взаимозависимость способствует усложнению процесса, и становится трудно определить степень зависимости. Однако, известно, что некоторые переменные, такие, как например, переменные напряжения, силы сжатия и модуля упругости материала зависимы, хотя их в целом можно использовать так, как будто они независимы.

Для оценки конструктивной надежности необходимо статистически охарактеризовать основные переменные, т.е. получить, по меньшей мере, их функцию распределения, параметры и корреляционную матрицу. Параметры распределений могут быть проанализированы, исходя из данных, и используя обычные статистические методы: максимальной вероятности, методы моментов и т.д. Данные должны подвергаться внимательному рассмотрению, для того, чтобы исключить выбросы, изучить тенденции и т.д. Графическое изображение данных и используемой модели, как правило, также полезно.

Рекомендации относительно функций распределения и их параметры для создания моделей, как правило, встречающихся воздействий и значений несущей способности, влияющих на конструктивную надежность, представлены в работе [5].

Пример 1:

Рассмотрим основную переменную и следующие экспериментальные данные:

Данные={1.3,3.2,4.3,1.3,5.4,3.7,3.8,4.0,2.9,3.2,4.5,4.0,3.4,2.4,1.8,1.7,2.2,4.1,2.6,4.1,3.3, 3.5,3.7,2.4,2.8,2.5,3.,3.3,2.6,2.9,2.4,2.6,2.9,2.8,3.1,3.2,3.4,3.5,3.2,3.3,3.};

В следующей ниже таблице используются результаты, полученные с помощью прилагаемого пакета документов MATHEMATICA, который используется при анализе распределений. Были получены следующие статистические характеристики:

Количество данных	Среднее	Вариация	Стандартное отклонение	Коэффициент вариации
	значение			
41	3,105	0,700	0,837	0,270

Предпринимается попытка корректировки данных для нормального, логарифмически нормального и гамма- распределений. Параметры распределений оцениваются при помощи метода моментов. При интервалах {1.3-2.3, 2.3-2.7, 2.7-3.3, -3.7, 3.7-4.1, 4.1-6} выполняется тест хи-квадрат. На рисунке представлена гистограмма и функция плотности распределения (в данном случае нормального распределения) вероятностей. Результаты, полученные для каждого из распределений, показаны в следующей ниже таблице.

Тип распределения	Параметры	Оценка	Интервал достоверности
		W	%
Нормальное	3,103-0,847	0,612	96,0 - 99,6
Гамма	13,40-0,231	1,001	91,0-98,6
Логарифмически нормаль-	1,096-0,268	1,310	86,0-97,1
ное			

нормальное распределение

Величина интервала уровня доверительной вероятности зависит от другой гипотезы. Если моменты распределения вероятностей априори известны, то число степеней свободы соответствует числу интервалов минус единицу; если же моменты получены, исходя из данных, то число степеней свободы равняется числу интервалов минус три. Следовательно, одному и тому же значению оценки соответствуют два уровня доверительной вероятности.

Получается, что все три вида распределения хорошо совместимы с данными (нормальное распределение, кажется, подходит наилучшим образом). Поэтому, неясно, какое из распределений должно быть выбрано; при построении графического изображения кумулятивной функции распределения и нанесении точечных значений данных в прямом представлении и с другим масштабом ординат в двойных логарифмических координатах, можно взглянуть на эту задачу по-новому.

4.3 Проблема чувствительности хвоста распределения

Решения в статистике, как правило, исходя из «математических доказательств» не принимаются. Гипотеза принимается, если не получено каких-либо доказательств для ее отклонения. Распределение вероятности, относящееся к любой переменной величине, может оказывать существенное влияние на предполагаемые уровни вероятности разрушения. Кроме того, при установлении типа функции распределения, имеющиеся данные большей частью, конечно, относятся к центральной части распределения, где выбор того или иного типа функции распределения не является особо значимым. Данная проблема называется «проблемой чувствительности хвоста распределения».

Рис. 7 представляет собой графическое изображение данной проблемы, на котором три функции распределения с одним и тем же средним значением и стандартным отклонением, соответствующие случаю Примера 1 - нормальное, логарифмически нормальное и гамма - распределения - представлены как на нормальной шкале, так и в двойных логарифмических координатах. (Т.е. выражение z = -Log(-Log(y)), которое содержится в работе Гумбеля, увеличивающее шкалу верхнего «хвоста» распределения). На нормальной шкале существенной разницы между распределениями нет, но если сравнить с работой Гумбеля, различия для значения 0,95 квантили (характеристического значение) незначительны, а для значения 0,999 квантили (т.е. расчетного значения) – существенны. Кроме того, по работе Гумбеля может показаться, что все типы распределений являются адекватными распределению точек, с вероятностью, принятой для упорядоченного набора точек, равной i/n+1, но для оценки расчетного значения (к примеру, квантили 0,999) необходимо провести экстраполяцию, и таким образом различие между распределениями играет важную роль. Более высокая точка данных соответствует приблизительно 0,975 квантили (1-1/42).

Рис. 7. Кумулятивная функция распределения на нормальной шкале и в работе Гумбеля.

5. Пример с армированной бетонной плитой

5.1 Общие положения

Различные принципы расчета, упомянутые выше, могут быть проиллюстрированы на примере простой армированной бетонной плиты, использующейся в офисном здании. Этот пример показывает, каким образом в различных методах проектирования (метод допустимых напряжений, метод общего коэффициента запаса прочности и метод частных коэффициентов) интерпретируются неопределенности основных переменных с помощью выбора различных входных (расчетных) значений величин. Он также демонстрирует важность теории надежности при расчете конструкций, а также преимущества метода частных коэффициентов, основанного на теории надежности, по сравнению с другими методами проектирования.

Некоторые основные термины (например, нормативное сопротивление) и процедуры расчета, используемые в настоящем разделе, подробно описаны в различных главах настоящего Руководства 2. Несмотря на это, следующую ниже информацию можно рассматривать без логических обоснований.

5.2 Армированная бетонная плита

Плита, свободно опертая по двум сторонам, с длиной пролета, равной 6 м, подвергается постоянной нагрузке (собственный вес плиты и других закрепленных элементов здания), которая оценивается характеристическим значением (равным среднему значению) $g_k = 7kN/m^2$. Согласно стандарту EN 1991-1-1 [8] может быть принято характеристическое значение приложенной нагрузки на площади офисного здания, равное $q_k = 3kN/m^2$. Однако известно, что среднее значение этой нагрузки составляет значительно меньшую величину, равную приблизительно 0,8 kN/m^2 .

В дальнейшем следует использовать бетон C20/25, имеющий нормативное сопротивление $f_{ck} = 20MP_a$ (среднее значение равно 30 MP_a), и стержни арматуры типа S 500 с нормативным сопротивление $f_{yk} = 500MP_a$ (среднее значение равно 560 MP_a). Исходя из ранее полученных данных, общая высота плиты 0,25 м (рабочая высота плиты равна приблизительно 0,25 - 0,03 = 0,22м) была задана заранее. С учетом представленных выше данных следует выполнить проверку технического задания и определить площадь плиты, подлежащей армированию.

5.3 Расчет плиты

Сначала рассмотрим простой чертеж поперечного сечения плиты, включая упрощенные эпюры распределения напряжений в сжатой зоне бетона (прямоугольной и треугольной) как показано на рис. 8.

Рис. 8. Распределение напряжений в армированной бетонной плите.

Когда рассматривается прямоугольная эпюра напряжений, можно записать следующие условия равновесия (см. Рис.8):

 $0.8f_c xb = A_s f_y$ (30) $A_s f_y (d - 0.4x) = M$ (31)

Что обозначают основные переменные, используемые в уравнениях (30) и (31) очевидно на рис. 8: величина d – рабочую высоту, x – глубину нейтральной оси, b – ширину плиты (принимается равной 1м), A_s – площадь армирования, f_c – прочность бетона, и f_y – прочность армирования (предел текучести). Изгибающий момент в уравнении (31) задается следующим образом:

$$M = \frac{(g+q)L^2}{8} \tag{32}$$

L обозначает длину пролета плиты, свободно опертой по двум сторонам.

Используя условия равновесия, представленные соотношениями (29) и (30), можно вывести следующую формулу площади армирования A_c :

$$\frac{A_s}{bd} = \frac{f_c}{f_y} \left(1 - \sqrt{1 - \frac{2M}{f_c b d^2}} \right)$$
(33)

Не вдаваясь в технические подробности, необходимо обратить внимание на то, что уравнение (33) может быть применено для приближенной оценки в методе общего коэффициента запаса прочности и методе частных коэффициентов. Для необходимых расчетов можно использовать прилагаемые к Руководству документы EXCEL RCBeam и MATHCAD RCBeam.

В классическом методе допустимых напряжений рассматривается треугольный блок со сжимающим напряжением в сжатой зоне бетона, которой показан также на рис. 8, и линейная диаграмма зависимости деформации от напряжения. Площадь армирования A_s может быть вычислена с использованием прилагаемого документа MATHCAD RCBeam.mcd, который содержит более подробные расчеты.

Следует обратить внимание на то, что до настоящего времени основные переменные рассматривались как детерминированные величины без учета каких-либо неопределенностей, которые могут оказывать потенциальное влияние на свои фактические значения. Однако широко известно, что некоторые основные переменные, входящие в уравнение (31), могут иметь значительный разброс (особенно воздействие нагрузки (изгибающий момент) М, прочность бетона f_c , и прочность армирования f_v). С другой стороны, геометрические

параметры A_s , *b* и *d*, кажется, являются значительно менее неопределенными (почти постоянными или детерминированными).

Для получения первой оценки площади A_s можно взять средние (усредненные) значения всех основных участвующих переменных. Интуитивно становится понятно, что это, возможно, не обеспечит достаточно безопасных показателей, и вместо средних значений следует применять «значения, взятые с запасом (безопасные)». В таблице 1 представлены средние значения наряду со значениями основных переменных в том виде, в котором они используются при проведении расчетов, согласно правилам описанных выше методов.

Таблица 1. Входные расчетные (характеристические) данные по нагрузкам и прочности мате
риалов для расчета конструкции с использованием различных методов расчета.

		Мете	од расчета	
Основная переменная	Среднее значение	Допустимые напряжения	Общий коэффициент	Частный коэффициент
			запаса прочности	
Постоянная нагрузка $g[kN/m^2]$	7	7	7	9,45
Приложенная нагрузка $q\left[kN/m^2 ight]$	0,8	3	3	4,5
Прочность бетона на сжатие $f_c ig[MPa ig]$	30	5,5	20	13,3
Прочность арматуры на растяжение $f_y[MPa]$	560	275	500	435

Данные таблицы 1 показывают четкое различие между рассматриваемыми методами расчета. Например, входные значения постоянной нагрузки g, используемые при расчете конструкции согласно методу допустимых напряжений и методу общего коэффициента запаса прочности, равны среднему значению (7 kN/m^2), в то время как расчетное значение по методу частных коэффициентов (9,45 kN/m^2) является произведением характеристического значения и значения частного коэффициента $y_G = 1,35$. Расчетное значение приложенной нагрузки q, используемое при расчете конструкции в соответствии с методами допустимых напряжений и общего коэффициента запаса прочности равно характеристическому значение (3 kN/m^2), в то время как расчетное значение частного коэффициента у $_G = 1,35$.

Входные значения прочности бетона на сжатие f_c , используемые в различных методах расчета, существенно отличаются от среднего значения этой величины (30 MPa). Это же характерно и для значений прочности арматуры на растяжение f_y . Значения допустимых напряжений, указанные в таблице 1, представлены в стандартах по проектированию конструкций. Очевидно, что эти значения существенно ниже среднего значения, поскольку предполагается, что в них учтены все неопределенности, включая значения нагрузок. Входные значения прочности в методе общего коэффициента запаса прочности равны характеристическим значениям. В методе частных коэффициентов расчетное значение прочности бетона 13,3 MPa получено при помощи деления характеристического значения 20 MPa на значение частного коэффициента $y_M = 1,5$. Аналогичным образом, расчетное значение прочности стали 435 MPa получено посредством деления характеристического значения 500 MPa на значение частного коэффициента $y_M = 1,5$. следует обратить внимание на то, что коэффициент 1,9 используется для усиления эффекта нагрузки (изгибающего момента M) когда метод общего коэффициента используется для описания площади армирования A_c .

Результирующие значения площади армирования, полученные для всех методов расчета и упомянутые выше, указаны в таблице 2.

Таблица 2. Железобетонная плита, свободно опертая по двум сторонам, спроектированная с использованием различных исторических методов, с заданной длиной пролета L =6м, высотой h =0,25м (d=0,22м) и значениями нагрузки g_k =7 kN/m^2 , q_k = $3kN/m^2$ (среднее значение 0,8 kN/m^2), C20/25 (f_{ck} = MPa, среднее значение 30 MPa), f_{yk} =500 MPa (среднее значение

).

Метод расчета	M[kNm]	$A_s m^2$	$\mu M_{R}[kNm]$	β	p_f
Среднее значение (отвлеченная величи- на)	35,1	0,00038	35,1 0	0	0,5
Допустимые напряжения Общий коэффициент запаса прочности	45,0 45,0	0,00204 0,00082	228,9 8.0 97,4 5,0	8.0 5,2	0,44x10-16 0,32x10-7
(s ₀ =1,9) Метод частных коэффициентов (Евро- пейский комитет по стандартизации, CEN)	62,8	0,00069	82,4	4,2	0,12x10-5

Прилагаемые документы EXCEL RCBeam и MATHCAD RCBeam могут использоваться для проверки результирующих данных, приведенных в таблице 2. В этих документах также содержится подробное описание применяемых процедур расчета.

Из таблицы 2 следует, что результирующие значения площади армирования варьируются в широком диапазоне, от $A_s = 0,0038 \text{m}^2$ (оценка среднего значения) до $A_s = 0,00204 \text{m}^2$ (оценка методом допустимых напряжений). Наиболее целесообразной с экономической точки зрения процедурой расчета является расчет методом частных коэффициентов, который приводит к получению самых низких значений площади армирования $A_s = 0,00069 \text{m}^2$.

5.4 Оценка надежности

Распределение напряжений в прямоугольной (декартовой) системе координат (показанное на рис. 8), принятое при проектных расчетах согласно методу общего коэффициента запаса прочности или методу частных коэффициентов, является приемлемым способом оценки надежности плиты, спроектированной при помощи любого метода расчета, который включает в себя треугольную эпюру напряжений). Таким образом, учитывая условия равновесия, использованные в выражениях (30) и (31), функция предельного состояния может быть записана в следующем виде:

$$Z(X) = A_{s}f_{y}\left(d - \frac{A_{s}f_{y}}{2bf_{c}}\right) - M = A_{s}f_{y}\left(d - \frac{A_{s}f_{y}}{2bf_{c}}\right) - \frac{(g+q)L^{2}}{8}$$
(34)

Исходя из функции предельного состояния (34), индексы надежности β и вероятность разрушения p_f могут быть вычислены при помощи имеющихся на рынке программ VaP [9], COMREL [10] или MATHEMATICA notebook FORM.nb. Приближенная оценка индекса надежности β и вероятности разрушения p_f (с приемлемым уровнем точности) могут быть получены при использовании прилагаемого программного пакета MATHCAD sheet ReIRCB, в котором используется простая процедура численного интегрирования. Исчерпывающий документ MATHCAD sheet ReIRCB снабжен пояснениями (включая информацию об исходных теоретических моделях основных переменных) и понятен без дополнительных разъяснений. Подробное описание применяемых численных методов представлено в других главах настоящего Руководства 2.

Результирующие значения индекса надежности β и вероятности разрушения p_f указаны в таблице 2. Использование метода частных коэффициентов приводит к получению значения уровня надежности, выраженного соотношением β =4,2 (при вероятности разрушения равной 1,2 ×10⁻⁵), которое очень близко к значению β =3,8 (при вероятности разрушения равной 7,2×10⁻⁵), рекомендуемому стандартом EN 1990 [1]. При использовании метода общего коэффициента запаса прочности можно получить расчет с несколько большим запасом (β =5) (см. таблицу 2). Однако, метод допустимых напряжений, по-видимому, приводит к созданию расчета, достаточно невыгодного с экономической точки зрения (β =8). Очевидно, что «метод среднего значения» оказывается неприемлемым, поскольку при использовании этого метода получается самое низкое значение площади армирования A_s =0,00038м² (только при проценте армирования равном 0,0022), соответствующее β = 0 и высокой вероятности разрушения p_f =0,5.

6. Общий случай оценки вероятности разрушения конструкции

6.1 Общие положения

Существуют различные методы оценки вероятности разрушения конструкции в общем случае наличия большего количества переменных:

- Аналитический: Только в нескольких очень простых случаях можно придти к аналитически правильному решению. Это зависит от вектора переменных, которые должны быть независимыми, и иметь нормальное распределение, а также от области предельного состояния, которая должна ограничиваться гиперплоскостями. Этот метод не может рассматриваться в качестве общего решения.
- Числовой: Этот метод является точным решением в том смысле, что мы в принципе можем получить тот уровень точности, который нам необходим. Простое правило трапеций при интегрировании, в целом, дает хорошие результаты, при условии существования не слишком большого количества переменных (4 или 5). Сложность интегрирования увеличивается в геометрической прогрессии с количеством участвующих переменных.
- Методы Монте-Карло: Моделирование по методу Монте-Карло основано на случайной выборке переменных и включает в себя выполнение большого числа искусственных экспериментов. В настоящее

время метод Монте-Карло используется все чаще, поскольку появились более мощные и быстрые компьютеры. Использование этого метода без следования необходимым правилам ведет к возникновению трудностей, описанных выше. Во избежание этих трудностей используются методы уменьшения вариаций и методы оценки значимости.

 Методы надежности первого и второго порядка (FORM и SORM): Эти методы аппроксимации дают итеративные алгоритмы для вычисления индекса надежности, и использованием линейного или квадратического приближения к поверхности предельного состояния в точке, находящейся на минимальном расстоянии к средней точке переменных.

6.2 Методы надежности первого и второго порядка (FORM и SORM):

Хассофер и Линд разработали алгоритм инвариантного построения функции предельного состояния. Для получения значения индекса надежности необходимо придерживаться следующего порядка действий:

1. Описать функцию предельного состояния.

2. Определить статистические характеристики основные переменные; т.е. среднее значение, стандартное отклонение, функцию распределения и корреляционную матрицу.

3. Преобразовать набор основных переменных в набор независимых переменных (например, методом преобразования Розенблатта).

4. Стандартизировать набор основных переменных при помощи преобразования $X \rightarrow U$, чтобы

$$E(U) = 0$$
, и $CoV[U, U^T] = 1$. (35)

 Вычислить длину вектора минимального расстояния от новой исходной точки до касательной гиперплоскости поверхности предельного состояния, относящейся к новым переменным, в точке пересечения этого вектора с поверхностью предельного состояния.

6. Определить проектную точку ($X_{1d}, X_{2d}, ..., X_{nd}$) и коэффициенты чувствительности, $\alpha_1, \alpha_2 ... \alpha_n$, а именно единичные косинусы этого вектора.

На рис. 1 показана область основного примера, только с двумя переменными: эффекта воздействия и несущей способности. Исходная точка вектора β соответствует точке среднего значения переменных X, т.е. ($\mu_{X1}, \mu_{X2}, ..., \mu_{Xn}$). Вектор минимального расстояния от этой точки до поверхности предельного состояния перпендикулярен гиперплоскости (прямая линия в случае двух переменных), касательной к поверхности предельного состояния в проектной точке ($x_{1d}, x_{2d}, ..., x_{nd}$). Коэффициенты чувствительности α характеризуют влияние соответствующей переменной на значения вероятности разрушения.

Коэффициенты чувствительности могут быть представлены в следующем виде:

$$|\alpha_i| \le 1; \sum_{1}^{n} \alpha_i^2 = 1$$
 (36)

Как правило, эти значения α_i принимаются положительными, если они относятся к переменной несущей способности, и отрицательными, если они относятся к переменным эффекта воздействия.

Когда поверхность предельного состояния имеет значительную нелинейность, погрешность, при которой происходит замена поверхности на касательную гиперплоскость в этой точке, может играть важную роль. В подобных случаях, меньшая погрешность получается, если поверхность предельного состояния замещается касательной квадратической поверхностью. То есть используется квадратический член ряда Тэйлора. В этом случае, метод называется методом надежности второго порядка (SORM).

Как было указано выше, индекс надежности β и вероятность разрушения p_f связаны следующей формулой:

$$P_f - \Phi(-\beta); \ \beta = \Phi^{-1}(1 - P_f); \ (37)$$

где $\Phi(\cdot)$ обозначает стандартное нормальное распределение, а $\Phi^{-1}(\cdot)$ – его инверсию.

Пример 2

а) Расчет стальной балки

Свободно опертая балка: тип IPE 240 S235

Длина пролета L = 6,0м

Площадь поперечного сечения: $A = 39,12 \times 10^{-4} \text{ м}^2$

Удельная работа деформации, $W = 3243 \times 10^{-6} \text{ м}^{-3}$

Предел текучести $f_v = 235 MP_a$

Воздействия:

Постоянная нагрузка: $g_k = 7,0 kN/m$

Переменная нагрузка: $q_k = 3.0 k N / m$

Функция предельного состояния

 $Z(X) = \theta_1 W \cdot f_y - \theta_2 (g+q) L^2 / 8$

В приведенной ниже таблице все переменные описаны при помощи среднего значения, стандартного отклонения и функции распределения (см. также [5]):

Переменная	Условное обо-	Среднее з	зна- Стандартное	отклоне-	Функция распределен	ния
	значение	чение	ние			
Длина пролета	L [м]	6	0		Детерминированная	
Удельная работа дефор-	W [м ³]	3 243 x10⁻ ⁶	0		Детерминированная	
мации						
Модель несущей способно-	A. [-]	1	0,1		Логарифмически	нор-
сти					мальная	-
Условный предел текуче-	$f \ MP$ 1	280	19,6		Логарифмически	нор-
сти	$J_y [m_a]$				мальная	
Модель эффекта воздей-	A [-]	1	0,2		Логарифмически	нор-
СТВИЯ					мальная	-
Постоянная нагрузка	$\sigma \left[k N / m^2 \right]$	0.007	0.007 x0,1		Нормальная	
	g[m/m]		,			
Переменная нагрузка	$a \lceil kN/m^2 \rceil$	8000. 0	0. 0008x0,6		По Гумбелю	

При помощи MATHEMATICA notebook Form.nb и пакета Level II.m. были получены следующие результаты:

Вариант а: Результаты

Индекс надежности:	β = 3,82; Вероя	тность разруше	ения: $\Phi(\!-eta)$ =	=6,67x10 ⁻⁵		
Переменная	$ heta_{ m l}$	f_y	$ heta_2$	g	q	
Коэффициент чувствите сти	ельно0,392	-0,275	0,778	0,304	0,270	

Исходя из этих результатов, становится понятным, что индекс надежности имеет достаточно точное значение, и что предельное состояние является очень чувствительным к неопределенности модели воздействий (коэффициент влияния составляет 0,778).

Вариант б:

Предположим, что мы можем изучить воздействия более подробно, и что в итоге мы получаем результат, при котором среднее значение и вариации воздействий остаются прежними, но для данного случая мы уменьшили величину неопределенности модели и получили коэффициент вариации, равный 10%.

Модель эффекта воздействия $heta_2$ [-] 1 0,1 Логарифмически нормальная

Выполнив новый расчет с новыми значениями, мы получаем:

Индекс надежности: eta = 5,04; Вероятность разрушения: $\Phi(-eta)$ = 2,37х10⁻⁷

Implementation of Eurocodes Handbook 2

Переменная	$ heta_1$	f_{v}	$ heta_2$	g	q	
Коэффициент	чувствительно0,505	-0,354	0,505	0,332	0,503	
сти						

Из таблицы следует, что коэффициенты влияния являются более уравновешенными, при этом индекс надежности имеет достаточно высокое значение.

Вариант в:

Например, мы можем уменьшить сечение стального профильного листа. В этом случае:

Новый стальной профиль: тип IPE 220, $W = 252 \text{ см}^3$

Получаем следующие результаты:

Индекс надежности: β = 3,74; Вероятность разрушения: $\Phi(-\beta)$ = 9,29х10⁻⁵

	, , , ,					
Переменная	θ_1	f_y	$ heta_2$	g	q	
Коэффициент чувстви	тельно0,524	-0,367	0,524	0,383	0,411	
сти						

Пример 3

Рассмотрим плиту из примера, описанного в разделе 5 (см. рис. 8). Из условия равновесия было получено:

$$0,8f_c xb = A_s f_y$$

 $A_s f_y (d-0,4x) = M$

Исходя из условий равновесия, описанных выражениями (30) и (31), и учитывая неопределенность моделей несущей способности, θ_1 , и моделей воздействий, θ_2 , можно вывести следующую формулу, характеризующую функцию предельного состояния:

$$g(X) = \theta_1 A_s f_y \left(d - \frac{A_s f_y}{2f_c b} \right) - \theta_2 (g+q) L^2 / 8$$

В следующей таблице показаны переменные, полученные при расчете по MATHEMATICA notebook FORM.nb:

Переменная	Условные	Спелнее значе-	Станлартное	Функция распределе-
	обозначения	ние	отклонение	ния
Модель несущей способности	θ_1 [-]	1	0,1	Логарифмически нормальная
Предел прочности арматуры на раз- рыв	$f_y [MP_a]$	560	30	Логарифмически нормальная
Площадь армирования	$A_s[m^2]$	0,00069	0,0000345	Нормальная
Рабочая высота	d[m]	0,23	0,01	Нормальная
Прочность бетона на сжатие	$f_c [MP_a]$	30	5,5	Логарифмически нормальная
Модель нагрузки	$ heta_2$ [-]	1	0,2	Логарифмически
Постоянная нагрузка	$g[kN/m^2]$	7	0.7	Нормальная
Приложенная нагрузка	$q[kN/m^2]$	0,8	0,48	Гамма
Длина пролета	L[m]	6	-	Детерминированная

Результаты:

Индекс надежности: eta = 3,56; Вероятность разрушения: $\Phi(-eta)$ = 1,87х10-4

Переменная	$ heta_1$	A_{s}	f_y	d	f_c	θ_2	g	q
Коэффициент чувствител	1ь0,383	-0,193	-0,201	-0,177	-0,018	0,761	0,300	0,274
ности								

Implementation of Eurocodes Handbook 2

нормальное

Исходя из этих результатов, можно сделать следующие выводы: индекс надежности несколько ниже; коэффициент влияния несущей способности бетона f_c практически равен нулю, его можно рассматривать в качестве детерминированной величины, не влияющей на результаты; а величина неопределенности воздействий оказывает максимальное влияние.

Вариант б:

Выполнен новый расчет, учитывающий уменьшенную неопределенность модели нагрузки:

Модель нагрузки	θ_2 [-]		1		0,1		Логарифмически мальная		нор-
Результаты:									
Индекс надеж	ности: β = 4,63;	Вероятност	гь разруше	ния: Ф(–	β)=1,82x	10 ⁻⁶			
Переменная	$ heta_{ m l}$	A_{s}	f_y	d	f_c	θ_2	g	q	-
Коэффициент тельности	чувстви0.500	-0,259	-0,263	-0,235	-0,023	0,500	0,347	0,431	_
Вариант в:									
В этом случае лучаем:	индекс надежнос	ти несколь	ко выше. У	иеньшив г	поперечное	е сечение	стержней	арматуры	ы, по-
Площадь армиров	зания	$A_{s}[m^{2}] 0,00$	059	0	,00059x0,0	5	Норма	льное	
Модель нагрузки	e	2, [-] 1		0	,1		Логар	ифмичесн	си

Результаты:

Индекс надежности: eta = 3,86; Вероятность разрушения: $\Phi(-eta)$ =5,61x10⁻⁵

	-				- ,			
Переменная	$ heta_{ m l}$	A_{s}	f_y	d	f_c	θ_2	g	q
Коэффициент	чувстви0,504	-0,260	-0,266	-0,234	-0,020	0,504	0,368	0,401
тельности								

Из обоих примеров следует, что за счет уменьшения неопределенности модели воздействий можно уменьшить сечение стального профиля без снижения (а даже, наоборот, с увеличением) общего уровня надежности.

7. Надежность системы

7.1 Общие положения

Даже для простейшего случая с одним конструктивным элементом - балкой или колонной - следует рассматривать более одной функции предельного состояния – из-за риска разрушения в благоприятный или неблагоприятный момент или вследствие сдвига балки. В большинстве случаев конструкция имеет множество элементов, и называется «конструктивной системой».

Надежность этой системы зависит от надежности ее элементов: эффекты воздействий, оказываемых на каждый из элементов, зависят от приложенной нагрузки; нагрузок и несущей способности, и могут не быть независимыми, может возникать взаимосвязь между свойствами элементов в различных частях конструкции. Кроме того, существуют предельные состояния для конструкции как единого целого, такие, например, как общая деформация или осадка фундамента.

Когда определены все различные типы разрушения может быть построено «дерево отказов» или «дерево событий», характеризующее все типы разрушения конструкции.

Пример 4

Рассмотрим простую портальную раму, изображенную на рис. 4, подвергаемую воздействию горизонтальной и вертикальной нагрузок Q. Исходя из характера пластической деформации, рама может иметь три возможных типа разрушения. В каждой из зон образуются разные шарниры пластичности:

- а) Раскачивание: Шарниры пластичности образуются в сечениях 1 и 3;
- б) Колебание: Шарниры пластичности образуются в сечениях 1,2 и 3;
- в) Смешанный режим: Шарниры пластичности образуются в сечениях 2 и 3;

Разрушение в любой из зон ведет к разрушению конструкции и событие «разрушения конструкции» является совокупностью всех n типов разрушения (в примере n=3). Поэтому, вероятность разрушения конструкции может быть представлена в следующем виде:

$$P_f = P(F_S) = P(F_1 \times F_2 \times \dots \times F_n)$$
(38)

где F_i является событием разрушения типа i. Конструкции должны разрушиться в каждом типе m узловых соединений элементов. Следовательно, вероятность разрушения для каждого типа F_i выражается следующим уравнением:

$$P_{\mathbf{f}}(F_i) = \mathbf{P}(F_{1i} \emptyset F_{2i} \emptyset \dots \emptyset F_{mi})$$
(39)

где F_{ji} обозначает разрушение j элементов или узловых соединений в разрушения по типуi. При раз-

рушении конструкции по типу *i* должно разрушиться *m* элементов или узловых соединений.

В целом, конструкция теоретически характеризуется как система с параллельным соединением элементов, система с последовательным соединением элементов, или сочетание первого и второго.

7.2 Системы с параллельным соединением элементов

В системах с параллельным соединением элементов последние расположены таким образом, что разрушение одного или более из них не приводит к разрушению всей конструкции. Такая конструкция называется статически неопределимой. Эта статическая неопределимость может быть активной, если избыточные элементы конструкции активизируются до наступления предельного состояния любого из элементов, или может быть пассивной, если избыточные элементы активизируются только по достижении одним из них предельного состояния.

Следует учитывать, что любая статически неопределимая конструкция не обязательно представляет собой систему с параллельным соединением элементов: если элементы непрочные, разрушение любого из них может привести к формированию нового распределения напряжений, при котором немедленно происходят новые разрушения.

Разрушение системы с параллельным соединением элементов в чистом виде с количеством элементов т задается следующим образом:

$$P_{fsys} = \mathbf{P}\left(\bigcap_{1}^{m} Fj\right) = \mathbf{P}\left[\bigcap_{1}^{m} (Zj < 0)\right] (40)$$

где F_i обозначает событие разрушения элемента j с функцией предельного состояния Z_i . Таким обра-30M:

$$P(F_i) = P(Z_i < 0) \approx \Phi(-\beta)$$
(41)

Вероятность разрушения системы по методу надежности первого порядка (FORM) представлена в следующем виде:

$$\mathbf{P}_{fsvs} = \Phi_m(-\beta; p) \text{ (42)}$$

где Φ_m обозначает многомерное стандартное нормальное распределение, eta – вектор индексов надежности элементов, и *p* – корреляционную матрицу *m* × *m* индексов надежности, представленную следующим образом:

$$p_{jk} = \sum_{i} \alpha_{ij} \alpha_{ik}$$
 с *j* и *k* =1,2,...,*m* (43)

и α_{ii} – коэффициент чувствительности переменной i элемента j функции предельного состояния.

Вычисление вероятности разрушения системы является сложной задачей. Верхняя граница этой вероятности может быть вычислена при помощи следующего уравнения:

$$p_{fsys} = \underset{j,k=1}{\overset{m}{\text{min}}} \left[P\left(F_{j} \cap F_{k}\right) \right]$$
(44)

Простая приближенная оценка для только двух элементов:

$$p_{fsys} = \Phi(-\beta_1)\Phi(-\beta_2^*) \text{ with } \beta_2^* = \beta_2^- p\beta_1 / \sqrt{1-p^2} \text{ (45)}$$
$$p_{fsys} = \Phi(-\beta_1)\Phi(-\beta_2^*) \text{ c } \beta_2^* = \beta_2^- p\beta_1 / \sqrt{1-p^2} \text{ (45)}$$

7.3 Системы с последовательным соединением элементов

Система с последовательным соединением элементов представляет собой систему, обрушение которой происходит при разрушении любого ее элемента. Этот элемент называется «самым слабым звеном». Любая статически определимая конструкция является комплексной системой. Как было показано в предыдущем разделе, система с последовательным соединением элементов в чистом виде с количеством элементов *m* задается следующим образом:

$$C = P\left(\bigcup_{1}^{m} Fj\right)$$
(46)

Вероятность разрушения системы по методу надежности первого порядка (FORM) может быть записана в следующем виде:

$$P_{fsys} = 1 - \Phi_m(\beta; p)$$
 (47)

Простые границы вероятности выражаются следующим образом:

$$\underset{1}{\overset{m}{Max}} \left[P(F_j) \right] \le P_{fsys} \le Min \left[\sum_{1}^{m} P(F_j), 1 \right]$$
(48)

Эти границы вероятности, как правило, являются слишком широкими. В работе [11] представлен метод, по которому можно вычислить этот диапазон с большей точностью.

8. Заключение

Элементарные методы конструктивной надежности могут использоваться для оценки надежности основных случаев двух случайных переменных, когда функция предельного состояния формулируется как разность между результирующими значениями несущей способности конструкции и эффекта нагрузки. В общем случае с основными переменными следует использовать компьютерные программы, как правило, основанные на методах надежности первого и второго порядка (FORM и SORM).

Основные принципы теории надежности позволили получить практические методы, которые могут использоваться для оценки частных коэффициентов или основных переменных. Оценка различных уровней надежности в новых стандартах по расчету конструкций, однако, частично основана на эмпирических данных и ранее полученном опыте. Очевидно, эти данные и опыт зависят от локальных условий, включая климатические воздействия и традиционно используемые строительные материалы, и, следовательно, в разных странах могут варьироваться. Поэтому, число элементов и надежности и параметров в настоящем комплекте европейских стандартов остается на усмотрение соответствующих специалистов в странах, использующих эти стандарты.

В таблицах и программных пакетах MATHCAD, EXCEL и MATHEMATICA notebook содержатся дополнительные численные примеры. С их помощью можно выполнить повторные вычисления подобных примеров с основными конструктивными элементами, подвергаемыми общей постоянной и переменной нагрузке.

Список литературы

ПРИЛОЖЕНИЕ С. ПРОЦЕДУРА КАЛИБРОВКИ

ANNEX C - CALIBRATION PROCEDURE

Haig Gulvanessian¹ and Milan Holický²

¹BRE Watford, United Kingdom ² Klokner Institute, Czech Technical University in Prague, Czech Republic

Summary

The basic European standard for design of buildings and other engineering works, EN 1990 "Basis of structural design", provides alternative design procedures, for which national choice is allowed. One of the most important questions concerns three fundamental combinations of actions for persistent and transient design situations in the Ultimate limit states. Simple example of generic structural member shows, that the alternative load combinations may lead to considerably different reliability levels. Probabilistic methods of structural reliability theory are used to identify characteristic features of each combination and to formulate general recommendations. It appears that further calibration studies concerning structures made of different materials are needed during the examination period of EN 1990 in order to analyse all possible consequences of national choice.

1 INTRODUCTION

1.1 Background materials

Each part of Eurocodes, including basic document EN 1990 [1], contains a number of the Nationally Determined Parameters (NDP) for which national choice is allowed. In accordance with the Guidance paper L concerning the Construction Products Directive an important two years period after date of availability of each Eurocode Part is allowed to fix the NDPs. However it is expected that calibration will continue during the coexistence period, which starts at the end of the National calibration period and lasts up to three years after the national publication of the last Part of a Package.

1.2 General principles

Basic concepts of code calibration are mentioned in Annex C of EN 1990 [1], in the International Standard ISO 2394 [2] and ISO 13822 [3]. Additional information may be found in the background document developed by JCSS [4] and in recently published handbook [5] to EN 1990 [1]. Guidance for application of probabilistic methods of structural reliability may be also found in working materials provided by JCSS [6] and in relevant literature listed in [5] and [6].

In general NDPs may be calibrated either by direct comparison or by probabilistic methods. Results of both approaches are usually combined with judgement (as mentioned in ISO 2394 [2]). In this study probabilistic approach is applied mainly, a direct comparison of load effects is shortly described in Appendix A to this contribution. Note that for the probabilistic calibration software products [7,8,9] can be used. In particular the programme [9] is intended for calibration purposes. Special purpose MATLAB functions and MATHCAD sheet attached to this Annex may be also used for calibration studies.

It should be noted that two aspects of calibration might be explicitly considered: reliability and economy (see also Handbook 1). However, the following text shall be primarily concerned with reliability of structures with respect to ultimate limit states. Additional calibration aspects may concern fire safety of structures (see Handbook 5) or other accidental design situations. In particular EN 1990 [1] requires that in the case of fire, the structural resistance shall be adequate for the required period of time.

To consider all the above-mentioned aspects of structural reliability, an appropriate design lifetime, design situations and limit states should be considered (as described in Handbook 1). Note that the basic lifetime for a common building is 50 years and that, in general, four design situations are identified: persistent, transient, accidental and seismic.

2 FUNDAMENTAL LOAD COMBINATIONS

In the following, the combination of three actions is considered: permanent action G, imposed load Q (leading) and wind W (accompanying). EN 1990 [1] for the fundamental combination of these loads in persistent and transient design situations introduces three alternative procedures denoted here A, B and C. The loads (actions) G, Q and W and their characteristic values G_k , Q_k and W_k denote generally load effects (for example internal bending moments) of appropriate loads (actions) and should be distinguished from the original loads (actions) themselves. However, when mutual proportions of loads (actions) and load effects is not needed.

Design value of action effect E_d is obtained using the characteristic values G_k , Q_k and W_k and appropriate partial factors γ_G , γ_O , γ_W and reduction factors ξ , ψ_O and ψ_W as follows.

A. Considering the formula (6.10) in EN 1990 [1], the design value of action effect E_d is given as

$$E_{\rm d} = \gamma_G G_{\rm k} + \gamma_Q Q_{\rm k} + \gamma_W \psi_W W_{\rm k} \tag{1}$$

B. An alternative procedure is provided in EN 1990 [1] by twin expressions (6.10a) and (6.10b)

$$E_{d} = \gamma_{G} G_{k} + \gamma_{Q} \psi_{Q} Q_{k} + \gamma_{W} \psi_{W} W_{k}$$
⁽²⁾

$$E_{\rm d} = \xi \,\gamma_G \,G_{\rm k} + \gamma_Q \,Q_{\rm k} + \gamma_W \,\psi_W \,W_{\rm k} \tag{3}$$

The less favourable action effect from (2) and (3) should be considered. In equation (3) ξ is a reduction factor for unfavourable permanent actions *G*. Note that in equations (1) to (3) "+" generally implies "to be combined with".

C. In addition EN 1990 [1] allows further modification of alternative B, simplifying equation (2) by considering permanent loads only, thus the load effect is then

$$E_{\rm d} = \gamma_G \, G_{\rm k} \tag{4}$$

The less favourable action effect resulting from (3) and (4) is then considered. In addition to the combinations A, B, C provided in EN 1990 [1] (for recommended values $\gamma_G = 1,35$, $\gamma_Q = 1,5$) an additional combination may be also considered in the analysis to illustrate the sensitivity of the resulting reliability level to partial factors, and the possible effect of their reduction.

If the leading action is wind W, then in equations (1) and (2) instead of reducing wind action W by factor ψ_{W} , the imposed load Q should be reduced by the appropriate factor ψ_{Q} .

Factors γ_G , γ_Q and γ_W denote the partial factors of actions G, Q and W (the partial factors for both variable actions are equal, $\gamma_Q = \gamma_W$).

To investigate resulting load effects under various intensities of variable actions, the characteristic values of G_k , Q_k and W_k are related using quantities χ given as the ratio of variable actions Q_k+W_k to total load $G_k+Q_k+W_k$, and ratio k of accompanying action W_k to the main action Q_k

$$\chi = (Q_{k} + W_{k})/(G_{k} + Q_{k} + W_{k}), \ k = W_{k}/Q_{k}$$
(5)

Note that a realistic range of χ is from 0,1 to 0,6. However in some cases the load ratio χ may be very low if not zero (e.g. underground garages).

For a given design value of the load effect E_d the characteristic values of individual actions G_k , Q_k , W_k can be expressed using variables χ and k as follows

$$G_{k} = \frac{E_{d}}{(\xi)\gamma_{G} + \frac{((\psi_{Q})\gamma_{Q} + k(\psi_{W})\gamma_{W})\chi}{(1+k)(1-\chi)}}, Q_{k} = \frac{\chi G_{k}}{(1+k)(1-\chi)}, W_{k} = k Q_{k}$$
(6)

The factors ξ , γ_G and γ_Q indicated in the first relationship of (6) in brackets are applied in the same way (either yes or no) as in equations (1) to (4) for alternative combination rules A, B and C.

For alternative A, equation (1) is valid in the whole range $0 \le \chi \le 1$, whereas using alternative B, equation (2) is valid in the interval $0 \le \chi \le \chi_{\lim,B}$ and equation (3) in the interval $\chi_{\lim,B} \le \chi \le 1$. Correspondingly, for alternative C equation (4) is valid in the interval $0 \le \chi \le \chi_{\lim,C}$ and equation (3) in the interval $\chi_{\lim,C} \le \chi \le 1$. The limiting values $\chi_{\lim,B}$ and $\chi_{\lim,C}$ can be derived from equations (2) to (5) as follows

$$\chi_{\text{lim,B}} = \frac{\gamma_G(1-\xi)(1+k)}{\gamma_G(1-\xi)(1+k) + \gamma_Q(a-\psi_Q) + \gamma_W k(b-\psi_W)}$$
(7)

$$\chi_{\rm lim,C} = \frac{\gamma_G (1-\xi)(1+k)}{\gamma_G (1-\xi)(1+k) + \gamma_O a + \gamma_W kb}$$
(8)

where the auxiliary variable a = 1 and $b = \psi_W$ when for $k \le (1 - \psi_Q)/(1 - \psi_W)$ (imposed load Q is the leading action) and $a = \psi_Q$ and b = 1 when $k > (1 - \psi_Q)/(1 - \psi_W)$ (action W is the leading action).

EN 1990 allows through the National Annex, which will be published by national standardisation institution

- Which of the combination expression to use, and
- The specification of appropriate safety factors

Thus, the National Annexes should include the recommendation of one of the alternatives indicated in EN 1990 [1] for a fundamental combination of actions in the Ultimate limit states and partial factors γ_G and γ_Q for permanent and variable actions. Considering a generic structural member it will be shown that the choice of these nationally determined parameters may significantly affect the resulting reliability level. Partial and

reduction factors γ , ψ and ξ recommended in EN 1990 [1] and used in this paper are summarized in Table 1.

Action	Partial factors	Combination factor	Reduction factor	
	γ	Ψ	ξ	
Permanent G	1,35	1,0	0.85	
Imposed Q	1,5	0,7	-	
Climatic W	1,5	0,6	-	

Table 1. Partial and reduction factors.

In addition to the factors indicated in Table 1 other values will be used to make comparison of Eurocode procedures with some national rules.

3 GENERIC STRUCTURAL MEMBER

In case of generic structural member it is assumed that the characteristic value R_k of the resistance *R* may be defined as the 5% fractile of *R* and the design value R_d as

1

$$R_{\rm d} = R_{\rm k}/\gamma_R \tag{9}$$

where γ_R denotes the global resistance factor (commonly expected to be within the range from 1 to 1,2). The significance of both values R_k and R_d is obvious from Figure 2, where the random variable R is described by the probability density function $\varphi_R(R)$, and the design value R_d is indicated as a particular value of R corresponding to a certain small probability p of being violated.

Figure 2. Random variable R, the characteristic value R_k and design value R_d .

In design calculation of a structural member the design value R_d of the resistance R is normally obtained by substituting design values X_{di} for the random variables X_i , thus

$$R_{\rm d} = R(X_{\rm di}) \tag{10}$$

This expression is also used in design of members for the generic structural member and for the different materials.

Table 2 shows the assumed values for the global resistance factor γ_R and the coefficient of variation V_R , used in the following reliability analysis for a generic cross-section.

Table 2 Global resistance factor γ_R , the coefficient of variation V_R and the mean factor ω .

	Middle value	Range
EN - global safety factor $\gamma_R = R_k / R_d$	1,15	1,0 - 1,3
BSI - global safety factor $\gamma_R = R_k / R_d$, BSI	1,10	1,0-1,20
The coefficient of variation V_R	0,15	0,10-0,25
The mean factor $\omega = \mu_R / R_k$	1,28	1,10 - 1,40

Note 1. The coefficient of variation V_R includes the variability of the model uncertainty assumed to have the coefficient of variability 0,05.

Note 2. The values are different for BSI codes reflecting the fact that lower values of μ_R are used for particular materials.

A middle values for the global safety factor $\gamma_R = 1,15$, for the coefficient of variation $V_R = 0,15$ and for the mean ratio $\omega = \mu_R/R_k = 1,28$ are considered in the following example of a code condition.

4 PRINCIPLES OF RELIABILITY ANALYSIS

4.1 Limit state function

The most important step in reliability analysis is definition of a limit state function (reliability margin) Z(X) separating safe and unsafe domain of basic variables X. In this report the limit state function Z(X) is considered as in a simple form as a difference between the resistance R(X) and the load effect E(X)

$$Z(X) = R(X) - E(X) = \theta_R R_0(X) - \theta_E E_0(X)$$
(11)

where factor θ_R represents uncertainties of the resistance model $R_0(X)$ and factor θ_E represents uncertainties of the load effect model $E_0(X)$. The vector X denotes all the basic variables entering the expressions for the resistance R(X) and the load effect E(X). Taking into account general expressions (1) to (4) the load effect $E_0(X)$ may be written as

$$E(\mathbf{X}) = \theta_E \left(G_0 + Q_0 + W_0 \right) \tag{12}$$

Considering the limit state function given by equation (11) and expression (12) giving the load effect, it follows that basic variables R, G, Q, and W covering effects of model uncertainties are defined as follows

$$R = \theta_R R_0(X), \ G = \theta_E G_0, \ Q = \theta_E Q_0, \ W = \theta_E W_0 \tag{13}$$

Taking into account equation (13), the limit state function (11) may be written in a simple form as

$$Z(X) = R - (G + Q + W) \tag{14}$$

Note that the cumulative basic variables *R*, *G*, *Q*, *W* in equation (14) include effects of the factors θ_R and θ_E (see equation (13)).

4.2 Probabilistic models of basic variables

It is assumed that structural members are designed economically, which means that the design value of the resistance $R_d(X)$ equals the design value of the load effect $E_d(X)$

$$R_{\rm d}(\boldsymbol{X}) = E_{\rm d}(\boldsymbol{X}) \tag{15}$$

It should be noted that normally (due to several reasons) the design resistance $R_d(X)$ is greater than the design load effect $E_d(X)$, which may provide additional safety margin not considered here.

Assuming a certain set of partial and combination factors γ , ψ , and ξ , the design expression (15) can be used to specify the characteristic values X_k of each basic variable X. The probabilistic characteristics (the mean, standard deviation) of each basic variable X can be then related to its characteristic value X_k as indicated in Table 3.

Table 3. Probabilistic models of basic variables for time invariant reliability analysis using Turkstra's rule (combination of 50-year maximum of leading action and an annual maximum of accompanying action).

No.	Category of	Name of basic	Sym.	Dim-	Distri-	Mean	St.dev.
	variables	variables	X	ension	bution	μ_X	σ_X
1	Actions	Permanent	G_0	kN	Ν	$G_{\mathbf{k}}$	$0,1\mu_X$
2		Imposed - 5 years	Q_0	kN/m ²	GU	$0,2Q_k$	$1,1\mu_X$
2		Imposed - 50 y.	Q_0	kN/m ²	GU	$0,6Q_k$	$0,35 \mu_X$
3		Wind - 1 year	W_0	kN/m ²	GU	$0,3W_k$	$0,5\mu_X$
4		Wind - 50 year	W_0	kN/m ²	GU	$0,7W_{\rm k}$	$0,35 \mu_X$
5	Resistance	Resistance	R	kN/m ²	LN	R_k +1.65 σ_R	$0,15\mu_X$
6	Uncertainty	Uncertainty	θ_E	-	LN	1	0.05

Probabilistic models indicated in Table 3 are based on data available in the recommendation of JCSS [4,6] and literature [11,12,13,14]. As mentioned above the probabilistic characteristics indicated in Table 3 represent just conventional models that might be slightly conservative.

Note that the mean of a resistance *R* indicated in Table 3 in terms of the characteristic value R_k and the standard deviation σ_R may be assessed assuming a given coefficient of variation V_R using relationship

$$\mu_R = R_k \exp(1.65 \ V_R) \tag{16}$$

Under this assumption the mean resistance factor ω considered in Table 2 is given as

$$\omega = \mu_R / R_k = \exp(1,65 V_R) \tag{17}$$

Considering the coefficient of variation $V_R = 0.15$, the mean resistance factor becomes $\omega = 1.28$ as indicated in Table 2.

It should be emphasised that the probabilistic models of basic variables indicated in Table 3 are primarily intended as "conventional models" in time invariant reliability analysis

of structural members using Turkstra's combination rule [10] (explained also in [2]) for the probabilistic calibration of the rules for combination of actions.

Conventional models indicated in Table 3 should enable the objective comparison of results of various reliability studies expected in the near future in connection with implementation of the present suite of Eurocodes into the national systems of design codes. However, when the reliability of different types of structural members under particular conditions is assessed, the proposed models in Table 3 may have to be adjusted to the concrete conditions of the analysed structural member.

4.3 Reliability measures

The probability of failure P_f is the basic reliability measure used in this study. It can be expressed on the basis of a limit state (performance) function Z(X) defined in such a way that a structure is considered to survive if Z(X) > 0 and to fail if $Z(X) \le 0$. An example of the function Z(X) is given by equation (14). In a general case the failure probability P_f can be determined using the integral

$$P_{\rm f} = \operatorname{Prob}(Z \le 0) = \int_{g(X) \le 0} \varphi_g(X) dX$$
(18)

where $\varphi_g(X)$ denotes joint probability density distribution of the basic variable X, which may not be, however, available.

Assume that both the resistance R(X) and the load effect E(X) represent a single variable X used to analyse structural performance (e.g. axial force or bending moment that is represented by R(X) and E(X)). Then the integration indicated in expression (18) may be simplified and the probability P_f can then be expressed as:

$$P_{\rm f} = \operatorname{Prob}(Z(x) \le 0) = \int_{-\infty}^{\infty} \varphi_E(x) \Phi_R(x) \mathrm{d}x$$
(19)

where $\varphi_E(x)$ denotes the probability density function of E(X), $\Phi_R(x)$ the distribution of R(X). To use equation (19) both the probability density function $\varphi_E(Z)$ and the distribution function $\Phi_R(x)$ must be known (at least in an approximate form). Simplified procedure based on expression (19) is used in this study.

Note that there are commercially available software products (e.g. VaP, COMREL), which can be used to determine the failure probability $P_{\rm f}$ in more complicated cases than considered here (when expression (19) cannot be used). These software products were used in this study to check results obtained by numerical integration based on expression (19).

In Annex C of EN 1990 an alternative measure of reliability is conventionally defined by the reliability index β , which is related to $P_{\rm f}$ as

$$P_{\rm f} = \Phi(-\beta) \tag{20}$$

where Φ is the cumulative distribution function of the standardised normal distribution. The relation between $P_{\rm f}$ and β is indicated in Table 4.

P_{f}	10-1	10 ⁻²	10 ⁻³	10-4	10-5	10-6	10-7
β	1,28	2,32	3,09	3,72	4,27	4,75	5,20

Table 4. Relation between β and $P_{\rm f}$.

Table C2 of EN 1990 recommends for the ultimate limit state of buildings over a fifty year design working life a target value of reliability index $\beta_t = 3,8$. If one year period is considered in reliability verification, then $\beta_t = 4,7$. Both the equivalent reliability measures, the failure probability P_f and the reliability index β , are used in this study.

4.4 Sensitivity factors

Sensitivity factors of the First Order Reliability Methods (FORM) are normally used [1,2] to calibrate design values of basic variables and partial safety factors. Considering the limit state function Z(X) (reliability margin) given by equation (11), the sensitivity factors for the four cumulative variables R, G, Q, W can be defined in terms of their standard deviations σ_R , σ_G , σ_O and σ_W as follows

$$\alpha_{R} = \frac{\sigma_{R}}{\sigma_{g}}, \ \alpha_{G} = \frac{\sigma_{G}}{\sigma_{g}}, \ \alpha_{Q} = \frac{\sigma_{Q}}{\sigma_{g}}, \ \alpha_{W} = \frac{\sigma_{W}}{\sigma_{g}}$$
(21)

where σ_{g} denotes the standard deviation of Z(X) given as

$$\sigma_g = \sqrt{\sigma_R^2 + \sigma_G^2 + \sigma_Q^2 + \sigma_W^2}$$
(22)

In the following investigation the sensitivity factors α_R , α_G , α_Q and α_W defined by equation (21) are considered together with the failure probability P_f and the reliability index β . It should be underlined that α_R , α_G , α_Q and α_W defined by (21) refer to cumulative variables *R*, *G*, *Q*, *W*, which include effects of the factors of model uncertainties θ_R and θ_E (see equation (13)).

5 RESULTS FOR THE GENERIC CROSS-SECTION

5.1 One variable action

Results of the reliability analyses are presented in graphical form that indicates variation of the reliability index β , failure probability P_f , and sensitivity factors α_R , α_E , α_G , α_Q and α_W with the load ratio χ . In particular Figure 3 shows results of a simple case of one variable action only (the main variable action Q); Figure 3 indicates the variation of

- the reliability index β ,
- failure probability $P_{\rm f}$, and
- for expression 6.10 of EN 1990 sensitivity factors α_R , α_E , and partial sensitivity factors α_G , α_Q and α_W

with the load ratio χ .

For the analysis it has been assumed that a single variable action, the imposed load Q having the characteristic given in Table 3 is acting on the generic element only (i.e. k = 0.0). A middle value for the global safety factor $\gamma_R = 1,15$ and for coefficient of variation $V_R = 0,15$ have been considered.

Figure 3. Variation of the reliability index β , the failure probability P_f and the sensitivity factors α_R , α_E , α_G , α_Q and α_W with the load ration χ for k = 0, for a generic cross-section assuming $\gamma_R = 1,15$ and the coefficient of variation $V_R = 0,15$.

It follows from Figure 3 that for the assumed higher coefficient of variation $V_R = 0,15$ only the combination rule A (i.e. expression (6.10) of EN 1990) [1] seems to be fully acceptable ($\beta > 3.8$ and $P_{\rm f} < 7,23 \times 10^{-5}$) in the interval $0 < \chi < 0.8$, however the reliability level considerably varies with χ . In some cases the alternative A might lead to an uneconomic design.

The alternative B (i.e. expression (6.10a) and (6.10b) of EN 1990) is acceptable in a slightly shorter range of χ , $0 < \chi < 0.7$ than the variant A but provides obviously much more uniform distribution of reliability level with χ . Obviously it would lead to a more economic

design than the alternative A. Alternative C (i.e. modified expression (6.10a) and (6.10b) of EN 1990 [1]) is providing rather low reliability level particularly for the interval $0 < \chi < 0.3$ and should not be used unless partial factors γ are changed.

Similar results were obtained in previous studies [11,12,13,14] of structural elements made of different materials (concrete and steel elements). These studies differ from the presented results primarily by the value of the partial factor γ_R and the coefficient of variation V_R (and also by the asymmetry of the distribution of *R*). Just the conclusions formulated above seem to be supported by a number of different material oriented examples.

Note that the sensitivity factor α_R increases to about $\alpha_R \sim 0.9$ while the factor α_E decreases, $\alpha_E > -0.5$, indicating that the resistance gives a greater contribution to safety than intended by EN 1990. However this conclusion is strongly dependent on assumed coefficient of variation V_R . With increasing V_R the sensitivity factor α_R increases. It is interesting to note that than the sensitivity factors are very close to the values recommended in EN 1990 [1], i.e. $\alpha_R \sim 0.9 \ \alpha_E \sim -0.7$.

5.2 Two variable actions

A more general case when two variable actions (a leading imposed load Q, together with an accompanying action W) are acting is shown in Figure 4, which (similarly as Figure 3) shows the variation of the

- reliability index β ,
- failure probability $P_{\rm f}$, and

• for expression 6.10 of EN 1990 sensitivity factors α_R , α_E , α_G , α_Q and α_W with the load ratio χ for k = 0.75 and the coefficient of variation $V_R = 0.15$.

The case considered for Figures 3 (i.e. k = 0, with a single imposed load Q acting) is extended so that a more detailed insight of the effect for the reliability parameters considered can be obtained. However Previous investigations [11,12] clearly show that reliability in case of two variable actions is considerably greater than reliability in case of one variable action.

Figure 4. Variation of the reliability index β , the failure probability P_f and the sensitivity factors α_R , α_E , α_G , α_Q and α_W with the load ratio χ for k = 0.75, for a generic cross section assuming $\gamma_R = 1,15$ and the coefficient of variation $V_R = 0,15$.

It follows from Figure 4 that for the assumed coefficient of variation $V_R = 0,15$ and the consideration of two variable actions the reliability of the generic cross-section exposed to two variable actions is considerably greater than the reliability of the same cross-section exposed to one variable action only. This finding also indicates that the factor ψ_W may be rather high. Note that the sensitivity factors α_R seems to be slightly greater than the values $\alpha_R = 0,8$ considered in EN 1990 [1] and α_E in absolute value is less than $\alpha_E = -0,7$ recommended in [1]. This finding depends on assumed variability of basic variables.

Figure 5. Variation of the reliability index β with the load ratio χ and partial factor for resistance γ_R and k = 0 (i.e. imposed load Q is the only variable action), for the generic-cross section assuming partial safety factors $\psi_G = 1,35$ and $\psi_Q = 1,5$, and the coefficient of variation $V_R = 0,15$.

It follows from Figure 5 that for the assumed variables the acceptable domain of the load ratio χ and the coefficient of variation V_R is limited by the contour line determined as an intersection of the β surface and the plain $\beta = 3,8$ in Figure 5. Obviously with increasing γ_R reliability index β increases, $\gamma_R = 1.15$ would be satisfactory for most of the practical range of the load ratio χ (for the load ratio $\chi < 0,8$).

6 CONCLUDING REMARKS

The newly available EN 1990 provides alternative design procedures and parameters that should be unambiguously specified in the National Annexes of Member States of CEN. These alternative design procedures lead in some cases to significantly different reliability levels. Preparation of National Annexes is therefore a complicated task for each Member State. Furthermore, the Eurocode standards recognise the responsibility of the regulatory authorities in each Member State and safeguard their right to determine values related to regulatory safety matters at national level.

Simple examples of a generic structural member confirm the results of the earlier studies that the reliability of structures, designed according to the alternative combination rules provided in EN 1990 by expressions (6.10), (6.10a) and (6.10b), may vary considerably. Expression (6.10) leads to the most reliable but in some cases uneconomical structures. Twin expressions (6.10a) and (6.10b) provide a lower but comparatively most uniform reliability level for all load ratios. Moreover, they seem to fully comply with EN recommendations (reliability index 3,8 for a 50-year time period). The lowest reliability is obtained from the third alternative, given by modified expression (6.10a) and expression (6.10b). This alternative seems to lead to a rather low reliability level, particularly for structures exposed mainly to a permanent load.

In order to make an unambiguous recommendation for National Annexes to EN 1990, further investigations are urgently needed. Obviously more complicated structural elements, made of various materials, should be analysed and compared. Such a calibration activity should preferably be organised on an international level. The short-term objective of these activities should be to develop the necessary background materials for preparation of the National Annexes. The long-term objective should be to further harmonization of the alternative design procedures considered during the next revision of the present generation of Eurocodes.

It is expected that further calibration studies concerning structures made of different materials will be needed during the examination period of EN 1990 (next few years) in order to analyse all possible consequences of national choice.

REFERENCES

- [1] EN 1990 Eurocode Basis of structural design. CEN 2002.
- [2] ISO 2394 General principles on reliability for structures, ISO 1998.
- [3] ISO 13822. Basis for design of structures Assessment of existing structures, ISO 2001.
- [4] JCSS: Probabilistic model code. JCSS working materials, http://www.jcss.ethz.ch/, 2001.
- [5] Gulvanessian, H. Calgaro, J.-A. Holický, M.: Designer's Guide to EN 1990, Eurocode: Basis of Structural Design; Thomas Telford, London, 2002, ISBN: 07277 3011 8, 192 p.
- [6] JCSS: Background documentation, Part 1 of EC 1 Basis of design, 1996.
- [7] VaP, Variable Processor, version 1.6, ETH Zurich, 1997.
- [8] COMREL, version 7.10, Reliability Consulting Programs, RCP MUNICH, 1999.
- [9] CodeCal, Excel sheet developed by JCSS, http://www.jcss.ethz.ch/.
- [10] Turkstra, C.J.: Application of Bayesian Decision Theory. Study No. 3 *Structural Reliability and Codified Design*. Solid Mechanics Division, University of Waterloo, Ontario, Canada, 1970.
- [11] Holický M., Marková J.: Verification of load factors for concrete components by reliability and optimization analysis: Background documents for implementing

Eurocodes. Progress in Structural Engineering and Materials, Vol. 2 No. 4, 2000, pp. 502-507.

- [12] Gulvanessian, H. Holický, M. Marková, J.: Calibration of Eurocode Reliability Elements Considering Steel Members; In: Proceedings of Third European Conference on Steel Structures, Volume II; Antonio Lamas and Luis Simoes da Silva, CMM – Associacao Portuguesa de Construcao Metalica e Mista, Guimaraes, Portugal; ISBN: 972-98376-3-5; pp. 1511-1520
- [13] Holický, M. Marková, J.: Reliability of Concrete Elements Designed for Alternative Load Combinations Provided in Eurocodes. *Acta polytechnica*, 2003/1.
- [14] SAKO; Joint Committee of NKB and INSTA-B. Basis of Design of Structures. Proposal for Modification of Partial Safety Factors in Eurocodes. 1999, 55 p.

APPENDIX A. DIRECT COMPARISON OF LOAD EFFECTS

Deterministic approach - the global load factor

Concept of the global load factor is sometimes used to compare various alternatives for load combination with no regard to a resistance of a structure. The deterministic global load factor γ_E follows directly from codified combination rules and given partial factors without any probabilistic consideration; it is simply expressed as

$$\gamma_E = E_d / (G_k + Q_k + W_k) \tag{A.1}$$

where the design load effect E_d is given by one of equations (1) to (4) depending on the combination rule considered (for example combination rules A, B or C). It follows from equation (1) to (4) and (A.1) that in general deterministic γ_E may be expressed as

$$\gamma_E = (1 - \chi) \gamma_G(\xi) + (\gamma_Q(\psi_Q) + k \gamma_W(\psi_W)) \chi / (1+k)$$
(A.2)

where the factors in brackets (ξ), (ψ_Q) and (ψ_W) are applied in accordance with the principles of appropriate combination rule. For example assuming that Q is the leading variable load and W is accompanying load, the combination rule A based on expression (6.10) of EN 1990 [1] the global factor γ_E follows from (1) and (A.2) as

$$\gamma_E = (1 - \chi) \gamma_G + (\gamma_Q + k \gamma_W \psi_W) \chi / (1 + k)$$
(A.3)

Similarly the global factors γ_E of other combination rules B and C may be obtained from general expression (A.2). It follows from (2) that equation (A.2) becomes

$$\gamma_E = (1 - \chi) \gamma_G + (\psi_O \gamma_O + k \gamma_W \psi_W) \chi / (1 + k)$$
(A.4)

When equation (3) is applied, then equation (A.2) becomes

$$\gamma_E = (1 - \chi) \gamma_G \xi + (\gamma_Q + k \gamma_W \psi_W) \chi / (1 + k)$$
(A.5)

When equation (4) is applied, then equation (A.2) becomes

$$\gamma_E = (1 - \chi) \gamma_G \tag{A.6}$$

Thus combination rule A is described by equation (A.3), combination B by equations (A.4) and (A.5), combination rule C by equations (A.4) and (A.6).

Figure A.1 shows the global factor γ_E for all three-combination rules A, B and C assuming the load factor k = 0 (two loads G and Q are considered only). It is interesting to note that the global load factor γ_E is strongly dependent on the load factor k. Figure A.2 shows the case of three variable actions G, Q and W assuming k = 0,75. Similar results may be obtained for any load ratio k. However, it is well recognised that decisive requirements (compare Figures 3 and 4) for calibration of reliability elements follow from combinations of two actions only (G and Q). Figure A.2 just illustrates variation of the global factor with the load ratio χ in the case of two variable actions.

Figure A.1. The global load factor γ_E for the combination rules A, B and C assuming k = 0.

Figure A.2. The global load factor γ_E for the combination rules A, B and C assuming k = 0,75.

Probabilistic approach - the theoretical global load factor

Probabilistic approach to comparison of load effects *E* considers the probability *p* of *E* exceeding $E_d = \gamma_E (G_k + Q_k + W_k)$, thus the probability

$$p = P(E > E_d) \tag{A.7}$$

The probability *p* is obviously dependent on the global load factor γ_E determining the load effect E_d as follows from equation (A.1). When probabilistic models of actions *G*, *Q* and *W* are known, then for a given value of γ_E the probability *p* may be determined. Let us remind that in accordance with the principles of EN 1990 [1] (considering $\alpha_E = -0.7$ and $\beta = 3.8$) the recommended value of the probability *p* given by equation (A.4) is

$$p_E = \Phi(\alpha_E \beta) = \Phi(-0.73,8) = 0.004 \tag{A.8}$$

Assuming probabilistic models of actions G, Q and W considered above in accordance with Table 3, variation of the theoretical load factors γ_E with the load factor χ for selected probabilities p is shown in Figure A.3 together with the deterministic load factors γ_E described above. In Figure A.3 full lines indicate the theoretical (probabilistic) load factors γ_E , the dashed lines indicate the deterministic load factors γ_E .

Figure A.3. The global load factor γ_E for the combination rules A, B and C assuming k = 0 and theoretical values of γ_E corresponding to selected probabilities of *E* exceeding E_d

Annex C - Calibration procedure

Figure A.3 clearly indicates differences between the theoretical global factors γ_E determined using probabilistic approach and corresponding deterministic values described by equation (A.2). It follows from Figure A.3 that the deterministic values are greater than the theoretical values of γ_E corresponding to the probability p = 0,004 indicated in equation (A.5). Thus, the Eurocode combination rules seem to be on a safe side, in particular the combination rules A and B. Note that for small load ratios χ the combination rule C provides lower values of the global factor than the theoretical γ_E and, therefore, seems to be unsatisfactory.

Figure A.3 further indicates that the theoretical γ_E is better followed up by γ_E corresponding to the combination rule B than those corresponding to the combination rules A or C. In that sense direct comparison of load effects confirms conclusions of previous studies when both the load effect and resistance are taken into account.

Figure A.4. Variation of the theoretical and deterministic global factor γ_E with the load ratio χ and the probability *p* assuming the combination rule A.

Variation of the global factor γ_E with the load ratio χ and the probability *p* clearly indicates that the combination rule A, represented in Figure A.4 by a plane, is rather safe (and perhaps uneconomic) substitution of the theoretical (probabilistic) values.

APPENDIX B. EFFECT OF THE RESISTANCE VARIABILITY

In reliability analysis of a generic cross section the coefficient of variability $V_R = 0.15$ and the partial factor $\gamma_R = 1,15$ are assumed as an example of a code condition. However, resistance of various structural members made of different materials may have different variability and the partial factor. The coefficient of variability V_R can be expected within a broad range from 0,05 up to almost 0,50 (including uncertainty resistance model). This should be reflected by appropriate value of the partial factor γ_R . Assuming lognormal distribution of R, the partial factor γ_R corresponding to the coefficient of variation V_R can be expressed as

$$\gamma_R = \exp(-1.65 \ V_R) / \exp(\alpha_E \ \beta \ V_R) = \exp(-1.65 \ V_R) / \exp(-3.04 \ V_R)$$
(B.1)

where $\alpha_E \beta = -0.8 \times 3.8 = -3.04$ as recommended in EN 1990 [1]. Note that for $V_R = 0.10$ equation B.1 yields the partial factor $\gamma_R = 1.15$.

Figure B.1 shows the variation of the partial factor γ_R with the coefficient of variability V_R together with corresponding reliability index β determined taking into account the partial factor γ_R as a function of V_R given by equation (B.1). In Figure B.1 the combination rule A and a generic cross section are considered only.

Figure B.1. Variation of the reliability index β of a generic cross section with the coefficient of variability V_R for selected load ratios χ assuming the partial factor γ_R as a function of V_R .

Figure B.1 indicates that if the partial factor γ_R is considered as a function of the coefficient of variability V_R , the effect of resistance variability is not essential. Considering a realistic range of resistance variability $0,05 < V_R < 0,25$, differences in β values seem to be about 0,5. This finding justifies the concept of a generic cross section used in reliability analysis of alternative load combinations.

APPENDIX C. NOTATION

- *E* load effect including model uncertainty
- E_0 load effect without model uncertainty
- $E_{\rm d}$ design value of the load effect E
- E_k characteristic value of the load effect E
- $E_{\rm d}$ design value of the load effect E
- G permanent load including model uncertainty, $G = \theta G_0$
- G_0 permanent load without load uncertainty
- $G_{\rm d}$ design value of the resistance $G, G_{\rm d} = \gamma_G G_{\rm k}$
- G_k characteristic value of the permanent load G
- k load ratio, $k = W_k/Q_k$
- $P_{\rm f}$ failure probability
- Q main (dominant) variable load including model uncertainty, $Q = \theta Q_0$
- Q_0 main (dominant) variable load without model uncertainty
- $Q_{\rm d}$ design value of the variable load Q, $Q_{\rm d} = \gamma_Q Q_{\rm k}$
- $Q_{\rm k}$ characteristic value of the variable load \tilde{G}
- *R* resistance including model uncertainty
- $R_{\rm d}$ design value of the resistance R, $R_{\rm d} = \gamma_R R_{\rm k}$
- $R_{\rm k}$ characteristic value of the resistance R
- V_R coefficient of variation
- W_0 main (dominant) variable action without model uncertainty
- *W* accompanying (non dominant) variable action including model uncertainty, $W = \theta W_0$
- $W_{\rm d}$ design value of the variable load W, $W_{\rm d} = \gamma_W W_{\rm k}$
- $W_{\rm k}$ characteristic value of the variable load W
- *X* vector of basic variables
- Z(X) limit state function
- α_R sensitivity factors of *R*
- α_E sensitivity factors of *E*
- α_G sensitivity factors of G
- α_Q sensitivity factors of Q
- α_W sensitivity factors of W
- β reliability index, $P_{\rm f} = \Phi(-\beta)$
- φ () probability density function
- χ load ratio, $\chi = (Q_k + W_k)/(G_k + Q_k + W_k)$
- γ_G partial factor for unfavourable permanent actions G
- γ_Q partial factor for unfavourable variable actions Q
- γ_W partial factor for unfavourable variable actions W
- ψ_Q reduction factor for unfavourable permanent actions Q
- ψ_W reduction factor for unfavourable permanent actions W
- ξ reduction factor for unfavourable permanent actions G
- θ coefficient of model uncertainty
- Φ distribution function of standardised normal distribution
ATTACHMENTS

1. MATLAB function "generic(gR,wr,k)".

Matlab function "Generic" is intended for investigation of the combination rules provided in EN 1990. A general structural member of the resistance R (including model uncertainty) is considered.

Function "Generic" calls function

Action3(mr,sr,skr, Rd,k), which further calls functions Lnpf (mr,sr,skr,me,se,ske), which calls Lndens(x,ske,me,se) Lndist(x,skr,mr,sr) Ndinv(p)

2. MATLAB function "Action3(mr,sr,skr,Rd,k)"

MATLAB function "Action3" is intended for determining statistical characteristics of the load effect of different combinations of three actions.

Function "Generic" calls function

Lnpf (mr,sr,skr,me,se,ske), which further calls functions Lndens(x,ske,me,se)

Lndist(x,skr,mr,sr) Ndinv(p)

3. MATLAB function "Lnpf(mr,sr,skr,me,se,ske)"

MATLAB function "Lnpf" calculates the failure probability using three parameter lognormal distribution for approximation of the load effect and resistance.

Function "Lnpf" further calls functions

Lndens(x,ske,me,se) Lndist(x,skr,mr,sr) Ndinv(p)

4. MATLAB function "Lndens(x,mu,sigma,sk)"

MATLAB function "Lndens" is intended for calculation of the probability density function of three-parameter lognormal distribution. The function is called by the function LNPF using command "Lndens(ske,me,se)", and returns the value of probability density function.

5. MATLAB function "Lndist(x,mu,sigma,sk)"

MATLAB function "Lndist" is intended for calculation of the distribution function of three-parameter lognormal distribution. The function is called by the function LNPF using command "Lndist(skr,mr,sr)," and returns the value of the distribution function.

6. MATLAB function "Ndinv(p)"

MATLAB function "Ndinv" calculates the inverse distribution function of the normal distribution (determining the reliability index beta). The function is called by the function Action3 or Action3i using command "Ndinv(p)" (or "Ndinv(p,mu,sigma)" or Ndinv(p,mu)"), and returns the value of the inverse distribution function.

7. MATHCAD sheet "Generic.mcd"

MATHCAD function "Generic" is intended for investigation of the combination rules provided in EN 1990. A general structural member of the resistance r (including model uncertainty) is considered.

8. MATHCAD sheet"Load effect.mcd"

MATHCAD sheet "LoadEffect" is intended for investigation of combination rules provided in EN 1990 by expressions (6.10), (6.10a) and (6.10b) considering three loads: G, Q and W. Turkstra's rule (50-year extremes of a leading and annual extremes of an accompanying action) is applied.

Attachment 1 – MATLAB function "generic(gR,wr,k)"

function Gener=Gener(gR,wr,k)

- % Program "Generic" is intended for investigation of the combination rules
- % provided in EN 1990.
- % A generic structural member of the resistance R (including model uncertainty)
- % is considered.
- % Function "Generic" calls function
- % Action3i(mr,sr,skr, Rd,k,i), which further calls functions
- % Ndinv(p), Lnpf (mr,sr,skr,me,se,ske), which calls
- % Lndens(x,ske,me,se), Lndist(x,skr,mr,sr) and Ndinv(p)

%

% INPUT data describing random variable R: Rd, gR, wR

%

- % VERSION
- % MH, Klokner Institute, Czech Technical University in Prague, 1.08.2003

%

% Input load ratio k = Wk/Qk used by the function "Action3i",

% k=0.00; % Input parameter that may be changed

% Characteristic of the resistance R

Rd=1; % may be chosen arbitrary

- Rk=Rd*gR; % gR=1.15; gR given by a fixed value not related to wr and beta
- % an alternative is indicated below in the first line of the loop for wr

%

- % Statistical parameters of R (having lognormal distribution) determined
- % in the following loop for selected coefficients of variation wr

% for i=3:3 % Range of the loop that may be adjusted.

%wr=0.05+(i-1)*0.05; betat = 3.8;

% gR= exp(0.7*betat*wr)/exp(1.65*wr); Rk=Rd*gR; % alternatively Kr=1; wKr=0.05; % lognormal distribution

mr=Kr*Rk*exp(1.645*wr); wr=(wr^2+wKr^2+wr^2*wKr^2)^0.5;

sr=mr*wr; skr=3*wr+wr^3;

% alternatively the mean mr=Rk/(1-1.645*wr)

Action3(mr,sr,skr,Rd,k) % Call function Action3i

%end

Attachment 2 – MATLAB function "Action3 generic(mr,sr,skr,Rd,k)"

```
function Action3 = action3(mr,sr,skr,Rd,k)
% CALL
% Lnpf (mr,sr,skr,me,se,ske), which further calls LNDENS and LNDIST
% INPUT
% R: mr,sr,skr; E:me,se,ske; vector of real arguments
% OUPUT
% beta: vector of beta values
% VERSION
% Klokner Institute, Czech Technical University in Prague, 24.04.2002
% Laod factors and parameters:
  gG=1.35; gQ=1.5; gW=1.5; psi1=0.7; psi2=0.6; wG=0.1; %psi1=psiQ, psi2=psiW
% Characteristics of variable loads Q and W for k \le (1-psiQ)/(1-psiW)
  if k \le (1-psi1)/(1-psi2);
    mmQ=0.49; wQ=0.4; skQ=1.14; mmW=0.3; wW=0.5; skW=1.14;
    else %Characteristics of variable loads Q and W for k>(1-psiW)/(1-psiQ)
    mmQ=0.2; wQ=1.1; skQ=1.14; mmW=0.7; wW=0.35; skW=1.14;
  end
% Model uncertainties of actions
     Ke=1; wKe=0.00; sKe=wKe*Ke; skKe=3*wKe+wKe^3;
% Parameters k=Wk/Ok given in the function that calls Action3
% Combination factors for expression (6.10) if k \le (1-psiQ)/(1-psiW)=0.75 or k \ge (1-psiQ)/(1-psiW)=0.75
psiW)/(1-psiQ)=0,75
  if k \le (1-psi1)/(1-psi2);
    ksi=1; psiQ=1; psiW=psi2;
    else
    ksi=1; psiQ=psi1; psiW=1;
  end
  %!!!!!!!!!!!!!!!!!!Case A, (6.10)
  %Effect of the load ratio CHI for expression (6.10) for the load ratio
CHI=(Qk+Wk/(Gk+Qk+Wk))
for n=1:21 %loop for CHI in the interval <0,1>
  CHI(n)=0+(n-1)*0.0499;
  mG(n) = Rd/(ksi*gG+(CHI(n).*(psiO*gO+k*psiW*gW))./((1-CHI(n))*(1+k)));
  sG(n)=mG(n)*wG;
  Qk(n) = CHI(n) * mG(n) / ((1 - CHI(n)) * (1 + k)); mQ(n) = Qk(n) * mmQ; sQ(n) = mQ(n) * wQ;
  Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW;
  meO(n)=mG(n)+mQ(n)+mW(n); seO(n)=sqrt(sG(n)^{2}+sQ(n)^{2}+sW(n)^{2});
we0(n) = se0(n)./me0(n);
  ske0(n) = (sQ(n)^{3} skQ + sW(n)^{3} skW)./se0(n)^{3};
  me(n)=(mG(n)+mQ(n)+mW(n))*Ke;
se(n)=me0(n)*Ke.*sqrt(wKe^{2}+we0(n)^{2}+we0(n)^{2}*wKe^{2});
ske(n) = me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3;
  %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW
  pf(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); beta(n)=-ndinv(pf(n)); pft(n)=0.0000723;
betat(n)=3.8;
```

```
sg(n)=sqrt(sr^2+se(n)^2);
  alG(n) = -mG(n) * sqrt(wG^2 + wKe^2 + wG^2 * wKe^2)./sg(n);
  alQ(n) = -mQ(n) * sqrt(wQ^2 + wKe^2 + wQ^2 * wKe^2)./sg(n);
  alW(n) = -mW(n) * sqrt(wW^2 + wKe^2 + wW^2 * wKe^2)./sg(n);
  ale(n) = -se(n) / sg(n);
  alr(n) = sr./sg(n);
end% end of the loop
    % Check selected values
       beta(1), beta(21), %The first and the last Beta
       sg(1);
       alr(1); ale(1); %The first and alr and alr
       sr; se(1);
%!!!!!!!!!!!!!!!!!!Case B, (6.10a)
% Combination factors for expression (6.10a) for any k<=>(1-psiW)/(1-psiQ)=0.75
  if k \le (1-psi1)/(1-psi2);
    ksi=1; psiQ=psi1; psiW=psi2;
    else
    ksi=1; psiQ=psi1; psiW=psi2;
  end
for n=1:12 %loop for CHI in the interval <-1,1>
  CHIa(n)=0+(n-1)*0.0499;
  mG(n)=Rd/(ksi*gG+(CHIa(n).*(psiQ*gQ+k*psiW*gW))./((1-CHIa(n))*(1+k)));
  sG(n)=mG(n)*wG;
  Qk(n) = CHIa(n) * mG(n) / ((1 - CHIa(n)) * (1 + k)); mQ(n) = Qk(n) * mmQ; sQ(n) = mQ(n) * wQ;
  Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW;
  meO(n)=mG(n)+mQ(n)+mW(n); seO(n)=sqrt(sG(n)^{2}+sQ(n)^{2}+sW(n)^{2});
we0(n) = se0(n)./me0(n);
  ske0(n) = (sQ(n)^{3} skQ + sW(n)^{3} skW)./se0(n)^{3};
  me(n)=(mG(n)+mQ(n)+mW(n))*Ke;
se(n)=me0(n)*Ke.*sqrt(wKe^{2}+we0(n)^{2}+we0(n)^{2}.*wKe^{2});
ske(n) = me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3;
  %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW
  pfa(n) = Lnpf(mr, sr, skr, me(n), se(n), ske(n)); betaa(n) = -ndinv(pfa(n));
end% end of the loop
%!!!!!!!!!!!!!!!!!!!!!Case B, (6.10b)
  if k \le (1-psi1)/(1-psi2);
    ksi=0.85; psiQ=1; psiW=psi2;
    else
    ksi=0.85; psiQ=psi1; psiW=1;
  end
for n=1:19 %loop for CHI in the interval <-1,1> for expression (6.10b)
  CHIb(n)=0.1+(n-1)*0.0499;
  mG(n)=Rd/(ksi*gG+(CHIb(n).*(psiQ*gQ+k*psiW*gW))./((1-CHIb(n))*(1+k)));
  sG(n)=mG(n)*wG;
  Qk(n) = CHIb(n) * mG(n) / ((1 - CHIb(n)) * (1 + k)); mQ(n) = Qk(n) * mmQ; sQ(n) = mQ(n) * wQ;
```

Annex C - Calibration procedure

```
Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW;
  meO(n)=mG(n)+mQ(n)+mW(n); seO(n)=sqrt(sG(n)^{2}+sQ(n)^{2}+sW(n)^{2});
we0(n) = se0(n)./me0(n):
  ske0(n) = (sQ(n)^{3} skQ + sW(n)^{3} skW)./se0(n)^{3};
  me(n) = (mG(n) + mQ(n) + mW(n)) * Ke;
se(n)=me0(n)*Ke.*sqrt(wKe^{2}+we0(n)^{2}+we0(n)^{2}.*wKe^{2});
ske(n) = me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3;
  %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW
  pfb(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betab(n)= -ndinv(pfb(n));
end% end of the loop
%!!!!!!!!!!!!!!!!!Case C, (6.10amod)
  ksi=1; psiQ=0.0; psiW=0.0;
%Effect of the load ratio CHI for expression (6.10amod)=(6.10c)
for n=1:4 %loop for CHI in the interval <-1,1>
  CHIc(n)=0+(n-1)*0.0499:
  mG(n)=Rd/(ksi*gG+(CHIc(n).*(psiQ*gQ+k*psiW*gW))./((1-CHIc(n))*(1+k)));
  sG(n)=mG(n)*wG;
  Qk(n) = CHIc(n) * mG(n) / ((1-CHIc(n))*(1+k)); mQ(n) = Qk(n)*mmQ; sQ(n) = mQ(n)*wQ;
  Wk(n)=Ok(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW;
  meO(n)=mG(n)+mQ(n)+mW(n); seO(n)=sqrt(sG(n)^{2}+sQ(n)^{2}+sW(n)^{2});
we0(n) = se0(n)./me0(n);
  ske0(n) = (sQ(n)^{3} skQ + sW(n)^{3} skW)./se0(n)^{3};
  me(n)=(mG(n)+mQ(n)+mW(n))*Ke;
se(n)=me0(n)*Ke.*sqrt(wKe^{2}+we0(n)^{2}+we0(n)^{2}.*wKe^{2});
ske(n) = me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3;
  %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW
  pfc(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betac(n)=-ndinv(pfc(n));
end% end of the loop
%!!!!!!!!!!!!!!!!!!Case D CSN (6.10)
gG=1.2; gQ=1.4; gW=1.4; %alternative values og gamma
  if k \le (1-psi1)/(1-psi2);
    ksi=1; psiQ=1; psiW=psi2;
    else
    ksi=1; psiQ=psi1; psiW=1;
  end
  %Effect of the load ratio CHI for expression (6.10)
  for n=1:21 %loop for CHI in the interval <0,1>
  CHI(n)=0+(n-1)*0.0499;
  mG(n) = Rd/(ksi*gG+(CHI(n).*(psiQ*gQ+k*psiW*gW))./((1-CHI(n))*(1+k)));
  sG(n)=mG(n)*wG:
  Qk(n) = CHI(n) * mG(n) / ((1 - CHI(n)) * (1 + k)); mQ(n) = Qk(n) * mmQ; sQ(n) = mQ(n) * wQ;
  Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW;
  meO(n)=mG(n)+mQ(n)+mW(n); seO(n)=sqrt(sG(n)^{2}+sQ(n)^{2}+sW(n)^{2});
we0(n) = se0(n)./me0(n);
```

```
ske0(n) = (sQ(n)^{3} skQ + sW(n)^{3} skW)./se0(n)^{3};
  me(n) = (mG(n) + mQ(n) + mW(n)) * Ke;
se(n)=me0(n)*Ke.*sqrt(wKe^{2}+we0(n)^{2}+we0(n)^{2}.*wKe^{2});
ske(n) = me0(n)^3.*Ke^3.*(wKe^3*skKe+we0(n)^3.*ske0(n)+we0(n)^2*wKe^2*6)./se(n)^3;
  %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW
  pfd(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betad(n)= -ndinv(pfd(n));
end% end of the loop
%!!!!!!!!!!!!!!!!!!!!Case E: BSI (6.10)
ksi=1; psiQ=1; psiW=1; %reduction factor not considered
% Combination factors for expression (6.10) for one k=0, or two k>0
   Rd=Rd*1.15/1.1; % adjustement for different for gm=1.10;
if k<=0.001;
     gG=1.4; gQ=1.6; gW=1.4;
     else
     gG=1.2; gQ=1.2; gW=1.2;
  end
  %Effect of the load ratio CHI for expression (6.10)
  for n=1:21 %loop for CHI in the interval <0,1>
  CHI(n)=0+(n-1)*0.0499;
  mG(n) = Rd/(ksi*gG+(CHI(n).*(psiQ*gQ+k*psiW*gW))./((1-CHI(n))*(1+k)));
  sG(n)=mG(n)*wG;
  Qk(n) = CHI(n) * mG(n) / ((1 - CHI(n)) * (1 + k)); mQ(n) = Qk(n) * mmQ; sQ(n) = mQ(n) * wQ;
  Wk(n)=Qk(n)*k; mW(n)=Wk(n)*mmW; sW(n)=mW(n)*wW;
  meO(n)=mG(n)+mQ(n)+mW(n); seO(n)=sqrt(sG(n)^{2}+sQ(n)^{2}+sW(n)^{2});
we0(n) = se0(n)./me0(n);
  ske0(n) = (sQ(n)^3 * skQ + sW(n)^3 * skW)./se0(n)^3;
  me(n) = (mG(n) + mQ(n) + mW(n)) * Ke;
se(n)=me0(n)*Ke.*sqrt(wKe^{2}+we0(n)^{2}+we0(n)^{2}.*wKe^{2});
ske(n) = meO(n)^3.*Ke^3.*(wKe^3*skKe+weO(n)^3.*skeO(n)+weO(n)^2*wKe^2*6)./se(n)^3;
  %mG(n).*gG+Qk(n).*gQ+Wk(n).*psiW.*gW
  pfe(n)=Lnpf(mr,sr,skr,me(n),se(n),ske(n)); betae(n)= -ndinv(pfe(n));
end% end of the loop
% Ploting beta and pf and alpha versus CHI
ksi=0.85; psiQ=psi1; psiW=psi2;gG=1.35;gQ=1.5;gW=1.5;
  if k \le (1-psi1)/(1-psi2);
    a=1; b=psi2;
  else
     a=psi1; b=1;
  end
CHIlim=gG^{(1-ksi)}(1+k)/(gG^{(1-ksi)}(1+k)+gQ^{(a-psiQ)}+gW^{k}(b-psiW))
CHIlimc=gG^{(1-ksi)}(1+k)/(gG^{(1-ksi)}(1+k)+gQ^{a+gW^{k}})
  for n=1:14
  B(n)=3+(n-1)*0.15;
```

 $C(n)=10^{(-2-(n-1))*0.35)};$

end maxbeta=ceil(max(beta)); maxpf=ceil(100*max(pf))/100;h=figure(1); % plot beta versus CHI subplot(2,1,1)%CSN Beta: ,CHI,betad,'r.', BSI beta CHI,betae,'k--' plot(CHI,beta,'r',CHI,betae,'k--',CHIa,betaa,'b',CHIb,betab,'b',CHIc,betac,'g--',CHI,betat,'k-.',CHIlimc,B,'g.',CHIlim,B,'b.','LineWidth',1.5,'MarkerSize',5) %betaa,CHI,betab,CHI,betat, grid,axis([0,1,3,6]) % maxbeta vlabel('Index Beta') subplot(2,1,2)% plot pf versus CHI semilogy(CHI,pf,'r',CHI,pfe,'k--',CHIa,pfa,'b',CHIb,pfb,'b',CHIc,pfc,'g--',CHI,pft,'k-.',CHIlimc,C,'g.',CHIlim,C,'b.','LineWidth',1.5,'MarkerSize',5) %plt using semilogarthmical scale, ,pfa,CHI,pfb,CHI grid,axis([0,1,1e-8,maxpf]) vlabel('Probability Pf') %subplot(3,1,3) % not generally active % plot Alphas versus CHI %plot(CHI,alG,CHI,alQ,CHI,alW,CHI,alr,CHI,ale, %'LineWidth',1.5) %Alphasplt scale, ,pfa,CHI,pfb,CHI %grid,axis([0,1,-1,1]) %xlabel('Load ratio CHI=(Qk+Wk)/(Gk+Qk+Wk)') %ylabel('Alphas for A - (6.10)')

Attachment 3 – MATLAB function "Lnpf(mr,sr,skr,me,se,ske)"

```
function pf = Lnpf (mr,sr,skr,me,se,ske)
% DESCRIPTION, 19.09.1999
%
    Lnpf evaluates the probability of failure pf considering the fundamental
    limit state function G = R - E.
%
% CALL
% val = Lnpf (mr,sr,skr,me,se,ske);
% FUNCTIONS USED
   lndens(x,ske,me,se).*Lndist(x,skr,mr,sr)
%
% INPUT
\% mr : the mean of R
%
    sr : standard deviation of R
%
    skr : coefficient of skewness of R (must be given)
%
    me : the mean of E
%
    se : standard deviation of E
%
    ske : coefficient of skewness of E (must be given)
% OUPUT
% val : failure probability pf
% VERSION
%
   MH, Czech Technical University in Prague, Klokner Institute, 2.8.2003
% Initialization
cr=(0.5*skr+(skr^{2}/4+1)^{0.5})^{(1/3)}-(-0.5*skr+(skr^{2}/4+1)^{0.5})^{(1/3)}; % constant of
lognormal R
ce=(0.5*ske+(ske^{2/4}+1)^{0.5})^{(1/3)}-(-0.5*ske+(ske^{2/4}+1)^{0.5})^{(1/3)}; % constant of
lognormal E
if cr==0
 r0=10^10;
else
                  %bound of lognormal distribution of R
 r0=mr-sr/cr;
end
if ce = 0
 e0=10^10;
else
                   %bound of lognormal distribution of E
 e0=me-se/ce;
end
% Determination of integration interval
k=10; % Coefficient of standard deviation
               %R positive
if skr>0;
 if ske>0;
               %R and E positive
   a=max(r0,e0);
   b=min(mr+k*sr,me+k*se);
                                % limit 6*sr
 else
   if ce = 0
               %R pos, E sym
     a=max(r0,me-k*se);
     b=min(mr+k*sr,me+k*se);
             % R pos E neg
   else
     a=max(r0,me-k*se);
     b=min(e0,mr+k*sr);
   end
```

```
end
             % R sym or neg
else
               \% R sym c=0 (sk=0)
 if cr == 0:
   if ce = 0
               % both R and E sym
     a=max(mr-k*sr,me-k*se);
     b=min(mr+k*sr,me+k*se);
   else
     if ske>0 %R sym, E pos
       a=max(mr-k*sr,e0);
       b=min(mr+k*sr,me+k*se);
             % R sym, E neg
     else
       a=max(mr-k*sr,me-k*se);
       b=min(mr-k*sr,e0);
     end
   end
 else
             % R neg
   if ske>0;
               % R neg, E pos
     a=max(mr-k*sr,e0);
     b=min(r0,me+k*se);
             % E sym or neg
   else
     if ce==0 % R neg, E sym
       a=max(mr-k*sr,me-k*se);
       b=min(r0,me+k*se);
             % R neg, E neg
     else
       a=max(mr-k*sr,me-k*se);
       b=min(e0,r0);
     end
   end
 end
end
% Integration interval
if a<0
 a=0;
  end
 delta=b-a;
 a=a+0.00000001*delta; % adjusted integration limits to avoid singularity
 b=b-0.0000001*delta;
 if a>b
 ' error in input data, a>b, increase the lower limit of the design parameter'
 pause
else
  n=20; inc=(b-a)/n; Y=0; % parameters of integration, n may adjusted if needed
for x=a:inc:b; % Integration of failure probability by trapezoidal rule
  e= Lndens(x,me,se,ske); % call Lndens
  r= Lndist(x,mr,sr,skr); % call Lndist
  Y=Y+e*r; \% sum of e*r
end
  pf=inc*Y;
end
```

Attachment 4 – MATLAB function"Lndens(x,mu,sigma,sk)"

```
function val = Lndens (x,mu,sigma,sk)
% DESCRIPTION
% NDENS evaluates the one-dimensional normal density function.
% CALL
% val = Lndens (x,sk);
% val = Lndens (x,sk,mu,sigma);
% INPUT
% x : real vector of arguments
% sk : coefficient of skewness (must be given)
% mu : mean value; optional; default = 0.0 (i.e. standard)
% sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard)
% OUPUT % val: vector of normal density values for the x's
% VERSION %
                   Milan Holicky, Czech Technical University in Prague, Klokner Institute
% 18.09.1999
if nargin < 3
  mu = 0.0:
  sigma = 1.0;
end
% Evaluate
                                  % normalize
x = (x-mu)/sigma;
c=(0.5*sk+(sk^2/4+1)^0.5)^(1/3)-(-0.5*sk+(sk^2/4+1)^0.5)^(1/3);%constant of lognormal
if c==0; % sk=0
    x0=10^10;
  else
   x0=-1/c; %bound of the distribution
  end
if sk>0; %check of x range
  if x 0 > x
   error ('x out of range')
  else
  end
else
  if x0<x
   error('x out of range')
  else
  end
end
%
if abs(c)>0.0001; %if for c=0 (sk=0)
   tt=sign(sk)*(log(abs(x+1/c))+log(abs(c))+0.5*log(1+c^2))/((log(1+c^2))^0.5);
  else
   tt=x;
  end
if abs(c)>0.0001; %if for c=0 (sk=0)
  val = \exp(-0.5*tt.^2)/(\operatorname{sqrt}(2*pi)*\operatorname{sigma}*\operatorname{abs}(x+1/c)*(\log(1+c^2))^{0.5});
else
  val = \exp(-0.5*tt^2)/(sigma*sqrt(2*pi));
end
```

Attachment 5 – MATLAB function"Lndist(x,mu,sigma,sk)"

```
function val = Lndist(x,mu,sigma,sk)
% DESCRIPTION, 18.09.1999
% LNDIST evaluates the one-dimensional lognormal distribution function.
% CALL
\% val = lndist (x,sk)
% val = lndist (x,sk,mu,sigma)
% INPUT
% x : real vector of arguments.
% sk : coefficient of skewness; default = 0.0 (i.e. normal distribution)
% mu : mean value; optional; default = 0.0 (i.e. standard).
%
   sigma : std. dev. > 0; optional; default = 1.0 (i.e. standard).
% OUPUT
% val : vector of the lognormal distribution evaluated at the x's.
% VERSION
% Milan Holicky, Czech Technical University in Prague, Klokner Institute
% Initialization
if nargin < 3
 mu = 0.0;
 sigma = 1.0;
end
x = (x-mu)/sigma;
                          % standardize
c=(0.5*sk+(sk^2/4+1)^0.5)^{(1/3)}-(-0.5*sk+(sk^2/4+1)^0.5)^{(1/3)}; % constant of lognormal
if c==0; % sk=0
   x0=10^10;
 else
   x0=-1/c; %bound of the distribution
 end
if sk>0; %check of x range
 if x \ge x
   error ('x out of range')
 else
 end
else
 if x_0 < x
   error('x out of range')
 else
 end
end
if abs(c) > 0.01; % if for c=0 (sk=0)
   tt=sign(sk)*(log(abs(x+1/c))+log(abs(c))+0.5*log(1+c^2))/((log(1+c^2))^0.5);
 else
   tt=x;
end
val = (1 + erf(tt/sqrt(2)))/2; % transformed error function
```

Attachment 6 – MATLAB function"Ndinv(x,mu,sigma)"

function [x] = norminv(p,mu,sigma) %NORMINV Inverse of the normal cumulative distribution function (cdf). % X = NORMINV(P,MU,SIGMA) returns the inverse cdf for the normal % distribution with mean MU and standard deviation SIGMA, evaluated at % the values in P. % Default values for MU and SIGMA are 0 and 1, respectively. % % MH, Klokner Institute, CTU Prague 4.8.2003 % if nargin < 2mu = 0;end if nargin < 3sigma = 1; end % Return NaN for out of range parameters or probabilities. sigma(sigma <= 0) = NaN; p(p < 0 | 1 < p) = NaN;x0 = -sqrt(2).*erfcinv(2*p); x = sigma.*x0 + mu;

Attachment 7 - MATHCAD sheet"Generic.Mcd"

Mathcad sheet "Generic" is intended to investigate combination rules provided in EN 1990 by expressions (6.10), (6.10a) and (6.10b) considering a generic structural memeber. Turkstra's rule (50 years extremes of a leading and annual extremes for accompnying action) is applied for the reference period of 50 years MH, August 2002.

Design expression: R0k / γM = (ξ)γG*Gk + (γQ)γQ*Qk + (γW)*ψW*Wk Limit state function: g(X) = $\rho * R0 - \theta * (G + Q + W), R0=K*fu$ Resistance of an element R = $\rho * R0$ is described by two parameter lognormal distribution LN(μ_R, σ_R), basic variables R0 by LN(ω Rk, 0.06 μ R), $\omega = 1/(1 - 2*wR0)$ and ρ by LN(1.1, 0.05).

Load effectE = θ * (G + Q + W) is discribed by ahree parameter lognormal distribution LN α ($\mu_E, \sigma_E, \alpha_E$), permanent load G by N(Gk, 0.1*Gk), 50 yearsimposed load Q by GUM(0.6 Qk, 0.35 μ Q), annual wind load W by GUM(0.3Wk, 0.5 μ W), uncertainty θ by LN(1.0, 0.05). Parameters: χ =(Qk+Wk)/(Gk+Qk+Wk), k=Wk/Qk, factors/m, γ G, γ Q, γ W, ξ , ψ Q, ψ W.

1	Input data:	Constants:	$\xi := 0.85 \psi Q :=$	$= 0.70 \psi W := 0$	0.60 k := 0).0	Rd := 1	
	Range variables: $\chi := 0$	0,0.090.99 γ	m := 1.0, 1.051.	5 $\gamma G := 1.1, 1.1$	51.5 γQ :=	1.2, 1.25 1.6	$\gamma W := 1.2, 1.251$.6
	Load parameters:	Normal distribut	tion of G:		μ G = Gk	wG:=0.1		
		Gumbel distribu	ition of Q: μC	≀= mQ*Qk	mQ:=0.6	wQ := 0.35	αQ := 1.14	
		Gumbel distribu	ution of W: μW	/ = mW*Wk	mW := 0.3	wW := 0.5	$\alpha W := 1.14$	
		Model uncertair	nty θ , Lognorma	al distribution:	$\mu \theta := 1.0$	$w\theta := 0.05$	$\alpha \theta := 3 \cdot w \theta + w \theta^3$	
	Resistance varables:	μ R0 = ω *R0k:	wR0:= 0.0, 0.1	20.35 ω(wR0)	$= \exp(1.65 v)$	vR0) αR0(w	R(0) := wR(0.3) + wR(0.3)	:0 ³
		Model uncertair	nty ρ, Lognorma	al distribution:	μρ := 1.0	wp := 0.05 α	$\rho := 3 \cdot w\rho + w\rho^3$	

2 Determination of the load variablesG, Q and W for a given resistance Rd

Characteristic values $Gk = \mu G$, Qk and Wk determined assuming Ed=Rd. Thus $\gamma G^*Gk + \gamma Q^*Qk + \gamma W^*Wk = Rd$

$$\mu G(\chi, \gamma G, \gamma Q, \gamma W) := \frac{\kappa d}{\left[\gamma G + \frac{(\gamma Q + k \cdot \gamma W) \cdot \chi}{(1 + k) \cdot (1 - \chi)}\right]}$$

$$Check: \qquad \mu G(0.5, 1.35, 1.5, 1.5) = 0.351$$

$$Qk(\chi, \gamma G, \gamma Q, \gamma W) := \frac{\chi \mu G(\chi, \gamma G, \gamma Q, \gamma W)}{(1 + k) \cdot (1 - \chi)} \qquad Wk(\chi, \gamma G, \gamma Q, \gamma W) := k \cdot Qk(\chi, \gamma G, \gamma Q, \gamma W) \qquad Qk(0.5, 1.35, 1.5, 1.5) = 0.351$$

$$Ed(\chi, \gamma G, \gamma Q, \gamma W) := \gamma G \mu G(\chi, \gamma G, \gamma Q, \gamma W) + \gamma Q \cdot Qk(\chi, \gamma G, \gamma Q, \gamma W) + \gamma W \cdot Wk(\chi, \gamma G, \gamma Q, \gamma W) \qquad Wk(0.5, 1.35, 1.5, 1.5) = 0$$

$$Normal distribution of G: \qquad \sigma G(\chi, \gamma G, \gamma Q, \gamma W) := w G \mu G(\chi, \gamma G, \gamma Q, \gamma W) \qquad Ed(0.5, 1.35, 1.5, 1.5) = 1$$

$$Gumbel distribution of Q: \qquad \mu Q(\chi, \gamma G, \gamma Q, \gamma W) := m Q Qk(\chi, \gamma G, \gamma Q, \gamma W) \qquad \sigma Q(\chi, \gamma G, \gamma Q, \gamma W) := w Q \cdot \mu Q(\chi, \gamma G, \gamma Q, \gamma W)$$

$$Gumbel distribution of W \qquad \mu W(\chi, \gamma G, \gamma Q, \gamma W) := m W \cdot Wk(\chi, \gamma G, \gamma Q, \gamma W) \quad \sigma W(\chi, \gamma G, \gamma Q, \gamma W) := w W \cdot \mu W(\chi, \gamma G, \gamma Q, \gamma W)$$

3 Load effect E = \theta * (G+Q+W) =\theta*E0:

D 1

The mean and st. deviation of E0:
$$\mu E0(\chi,\gamma G,\gamma Q,\gamma W) := \mu G(\chi,\gamma G,\gamma Q,\gamma W) + \mu Q(\chi,\gamma G,\gamma Q,\gamma W) + \mu W(\chi,\gamma G,\gamma Q,\gamma W)$$
$$\sigma E0(\chi,\gamma G,\gamma Q,\gamma W) := \sqrt{wG^2 \cdot \mu G(\chi,\gamma G,\gamma Q,\gamma W)^2 + wQ^2 \cdot \mu Q(\chi,\gamma G,\gamma Q,\gamma W)^2 + wW^2 \cdot \mu W(\chi,\gamma G,\gamma Q,\gamma W)^2}$$

The coefficient of variation of E0 (without model uncertainty
$$\theta$$
):

$$\begin{split} & \mu E0(0.4, 1.35, 1.5, 1.5) = 0.596 \\ wE0(\chi, \gamma G, \gamma Q, \gamma W) &:= \frac{\sigma E0(\chi, \gamma G, \gamma Q, \gamma W)}{\mu E0(\chi, \gamma G, \gamma Q, \gamma W)} & \mu E(\chi, \gamma G, \gamma Q, \gamma W) &:= \mu \theta \cdot \mu E0(\chi, \gamma G, \gamma Q, \gamma W) \\ wE0(0.4, 1.35, 1.5, 1.5) &= 0.123 \\ \end{split}$$
The coefficient of variation of E:

$$wE(\chi, \gamma G, \gamma Q, \gamma W) &:= \sqrt{wE0(\chi, \gamma G, \gamma Q, \gamma W)^2 + w\theta^2 + wE0(\chi, \gamma G, \gamma Q, \gamma W)^2 \cdot w\theta^2} \\ The standard deviation of E:$$

$$\sigma E(\chi, \gamma G, \gamma Q, \gamma W) &:= \mu E(\chi, \gamma G, \gamma Q, \gamma W) \cdot w E(\chi, \gamma G, \gamma Q, \gamma W) \\ \end{split}$$

4 Three parameter lognormal distribution of **E** wE(0.4, 1.35, 1.5, 1.5) = 0.133

Skewness of E0:

$$\alpha EO(\chi, \gamma G, \gamma Q, \gamma W) := \frac{\sigma Q(\chi, \gamma G, \gamma Q, \gamma W)^3 \cdot \alpha Q + \sigma W(\chi, \gamma G, \gamma Q, \gamma W)^3 \cdot \alpha W}{\sigma EO(\chi, \gamma G, \gamma Q, \gamma W)^3}$$

 $\alpha E0(0.4, 1.35, 1.5, 1.5) = 0.614$

Skewness of E:

$$\alpha E(\chi, \gamma G, \gamma Q, \gamma W) := \frac{w E(\chi, \gamma G, \gamma Q, \gamma W)^{3} \cdot \alpha E(\chi, \gamma G, \gamma Q, \gamma W) + 6 \cdot w \theta^{2} \cdot w E(\chi, \gamma G, \gamma Q, \gamma W)^{2} + w \theta^{3} \cdot \alpha \theta}{w E(\chi, \gamma G, \gamma Q, \gamma W)^{3}}$$

$$\alpha E(0.4, 1.35, 1.5, 1.5) = 0.591$$

Parameter C:

$$C(\chi,\gamma G,\gamma Q,\gamma W) := \frac{\left(\sqrt{\alpha E(\chi,\gamma G,\gamma Q,\gamma W)^{2} + 4} + \alpha E(\chi,\gamma G,\gamma Q,\gamma W)\right)^{\frac{1}{3}} - \left(\sqrt{\alpha E(\chi,\gamma G,\gamma Q,\gamma W)^{2} + 4} - \alpha E(\chi,\gamma G,\gamma Q,\gamma W)\right)^{\frac{1}{3}}}{2^{\frac{1}{3}}}$$

Parameters of transformed variable:

$$mE(\chi,\gamma G,\gamma Q,\gamma W) := -\ln(|C(\chi,\gamma G,\gamma Q,\gamma W)|) + \ln(\sigma E(\chi,\gamma G,\gamma Q,\gamma W)) - (0.5) \cdot \ln(1 + C(\chi,\gamma G,\gamma Q,\gamma W)^{2})$$
$$sE(\chi,\gamma G,\gamma Q,\gamma W) := \sqrt{\ln(1 + C(\chi,\gamma G,\gamma Q,\gamma W)^{2})} xO(\chi,\gamma G,\gamma Q,\gamma W) := \mu E(\chi,\gamma G,\gamma Q,\gamma W) - \frac{1}{C(\chi,\gamma G,\gamma Q,\gamma W)} \sigma E(\chi,\gamma G,\gamma Q,\gamma W)$$

Probability density of E, approximation by three parameter lognormal distribution: $x_{0}(0.4, 1.35, 1.5, 1.5) = 0.189$

 $Eln(x, \chi, \gamma G, \gamma Q, \gamma W) := dlnorm(x - x0(\chi, \gamma G, \gamma Q, \gamma W), mE(\chi, \gamma G, \gamma Q, \gamma W), sE(\chi, \gamma G, \gamma Q, \gamma W))$

5 Resistance variables
$$\mathbf{R} = \rho^* \mathbf{R}_0$$
: $\mu R(\gamma m, wR0) := \mu \rho \cdot Rd \cdot \gamma m \cdot \omega(wR0)$ [Check:] $\mu R(1.15, 0.15) = 1.473$
 $wR(wR0) := \sqrt{wR0^2 + w\rho^2 + wR0^2 \cdot w\rho^2}$ $\sigma R(\gamma m, wR0) := wR(wR0) \mu R(\gamma m)$ [wR(0.15) = 0.158]

6 Two parameter lognormal distribution of R

Transformed variable: $mR(\gamma m, wR0) := ln(\mu R(\gamma m, wR0)) - (0.5) \cdot ln(1 + wR(wR0)^2)$ $sR(\gamma m, wR0) := \sqrt{ln(1 + wR(wR0)^2)}$ Distribution function $Rln(x, \gamma m, wR0) := plnorm(x, mR(\gamma m, wR0), sR(\gamma m, wR0))$ mR(1, 015) = 22.038 sR(1, 0.15) = 0.157

Note that expression (6.10) is represented by solid red line, expressions (6.10a) and (6.10b) by solid blue line, expression (6.10a, mod) by dashed green line, BSI combination by dashed brown line, CSN combination by red dashed line, target reliability index by horizontal black dashed line. The twin expressions (6.10a) and 6.10b) provide the most uniform distribution of the reliability index β against the load ratio χ with reliability indexgreater than the target value β = 3,8 for majority of χ .

9 Reliability index β versus γ G a γ Q:

Figure 2: Reliability index β corresponding to expression (6.10) versus partial factors γ G a γ Q.

Parameters : k = 0

mQ = 0.6 WQ = 0.35 mW = 0.3 WW = 0.5

10 Reliability index β versus γ m a χ :

Figure 3: Reliability index β corresponding to expression (6.10) versus partial factor γ m and parameter χ .

Parameters : k = 0

 $mQ = 0.6 \ wQ = 0.35 \ mW = 0.3 \ wW = 0.5$

 $\beta 2, \beta 2t$

11 Reliability index β versus γ m a χ :

 $\beta 2(\chi, wR0) := \beta \ln(\chi, 1.15, wR0, 1.35, a \cdot 1.5, b \cdot 1.5) \quad \beta 2t(\chi, wR0) := 3.8$

Figure 4: Reliability index β corresponding to expression (6.10) versus parameter χ and the coefficient of variation*wR*.

Parameters : k = 0

 $mQ = 0.6 \ wQ = 0.35 \ mW = 0.3 \ wW = 0.5$

12 Reliability index β versus γ m a wR: $\beta 4(\gamma m, wR0) := \beta \ln(0.4, \gamma m, wR0, 1.2, a \cdot 1.4, b \cdot 1.4)$ $\beta 4t(\gamma m, wR0) := 3.8$

Figure 5: Reliability index β corresponding to expression (6.10) versus parameter γR and the coefficient of variation *wR*.

Parameters : k = 0

 $mQ = 0.6 \ wQ = 0.35 \ mW = 0.3 \ wW = 0.5$

Attachment 8 – MATHCAD sheet"LoadEffect.mcd"

MATHCADsheet "LoadEfect"

Mathcad sheet "LoadEffect" is intended for investigation of conbination rules provided in EN 1990 by expressions (6.10), (6.10a) and (6.10b) considering three loads: G, Q and W. Turkstra's rule (50 years extremes of a leading and annual extremes of an accompnying action) is applied. MH, May 2003. Design Load effect Ed = $(\xi)\gamma G^*Gk + (\gamma Q)\gamma Q^*Qk + (\gamma V)$ **Stochastic model** $\theta * (\mathbf{G} + \mathbf{Q} + \mathbf{W})$ E = Load effectE = θ * (G + Q + W) is discribed by ahree parameter lognormal distribution $LN\alpha(\mu_E,\sigma_E,\alpha_E)$, permanent load G by N(Gk, 0.1*Gk), 50 years imposed load Q by GUM(0.6 Qk, 0.35 µQ), annual wind load W by GUM(0.3Wk, 0.5µW), uncertainty θ by LN(1.0, 0.05). Parameters: $\chi = (Qk+Wk)/(Gk+Qk+Wk)$, k=Wk/Qk, factors/G, $\gamma Q, \gamma W, \xi, \psi Q, \psi W$. 1 Input data: Normailised load effect Ed := 1

Range variables:
 $\chi := 0.001, 0.01...0.99$
 $\gamma G := 1.., 1.1...1.9$
 $\gamma Q := 1.2, 1.25...1.6$
 $\gamma W := 1.2, 1.25...1.6$
 $\gamma W := 1.2, 1.25...1.6$
Reduction factors:
 $\xi := 0.85$
 $\psi Q := 0.70$
 $\psi W := 0.60$ Loasd ratio:
k := 0.0

2 Deterministic glabal factor:

Global load factor according to EN 1990

 $\gamma \big(\chi, \gamma G, \gamma Q, \gamma W \big) := \gamma G \cdot \big(1 - \chi \big) + \big(\gamma Q + k \cdot \gamma W \big) \cdot \frac{\chi}{(1 + k)}$

3 Probabilistic models

Permanent load G:	Normal distribution of G:	μ G = Gk wG:= 0.1
Variable load Q:	Gumbel distribution of Q: $\mu Q = mQ^*Qk$	$mQ := 0.6$ $wQ := 0.35$ $\alpha Q := 1.14$
Variable load W:	Gumbel distribution of W: μ W = mW*Wk	$mW := 0.3 wW := 0.5 \qquad \alpha W := 1.14$
Model uncertainty	Model uncertainty θ_{i} Lognormal distribution:	$\mu \theta := 1.0 w\theta := 0.05 \qquad \alpha \theta := 3 \cdot w\theta + w\theta^3$

4 Determination of the load variablesG, Q and W for a given load effect Ed = Rd

Characteristic values $Gk = \mu G$, Qk and Wk determined assuming Ed=Rd. Thus $\gamma G^*Gk + \gamma Q^*Qk + \gamma W^*Wk = Rd$

 $\mu G(\chi, \gamma G, \gamma Q, \gamma W) := \frac{Ed}{\left[\gamma G + \frac{(\gamma Q + k \cdot \gamma W) \cdot \chi}{(1 + k) \cdot (1 - \chi)}\right]}$ $Check: \mu G(0.4, 1.35, 1.5, 1.5) = 0.426$ $Qk(\chi, \gamma G, \gamma Q, \gamma W) := \frac{\chi \mu G(\chi, \gamma G, \gamma Q, \gamma W)}{(1 + k) \cdot (1 - \chi)}$ $Wk(\chi, \gamma G, \gamma Q, \gamma W) := k \cdot Qk(\chi, \gamma G, \gamma Q, \gamma W)$ Qk(0.40, 1.35, 1.5, 1.5) = 0.284 $Ed(\chi, \gamma G, \gamma Q, \gamma W) := \gamma G \cdot \mu G(\chi, \gamma G, \gamma Q, \gamma W) + \gamma Q \cdot Qk(\chi, \gamma G, \gamma Q, \gamma W) + \gamma W \cdot Wk(\chi, \gamma G, \gamma Q, \gamma W)$ Wk(0.5, 1.35, 1.5, 1.5) = 0 $Normal distribution of G: \sigma G(\chi, \gamma G, \gamma Q, \gamma W) := w G \cdot \mu G(\chi, \gamma G, \gamma Q, \gamma W)$ Ed(0.5, 1.35, 1.5, 1.5) = 1 $Gumbel distribution of Q: \mu Q(\chi, \gamma G, \gamma Q, \gamma W) := m Q \cdot Qk(\chi, \gamma G, \gamma Q, \gamma W)$ $\sigma Q(\chi, \gamma G, \gamma Q, \gamma W) := w Q \cdot \mu Q(\chi, \gamma G, \gamma Q, \gamma W)$ $HW(\chi, \gamma G, \gamma Q, \gamma W) := m W \cdot Wk(\chi, \gamma G, \gamma Q, \gamma W)$ $Wk(\chi, \gamma G, \gamma Q, \gamma W) := w W \cdot \mu W(\chi, \gamma G, \gamma Q, \gamma W)$

5 Load effect $E = \theta * (G+Q+W) = \theta * E0$:

The mean and st. deviation of E0: $\mu E0(\chi,\gamma G,\gamma Q,\gamma W) := \mu G(\chi,\gamma G,\gamma Q,\gamma W) + \mu Q(\chi,\gamma G,\gamma Q,\gamma W) + \mu W(\chi,\gamma G,\gamma Q,\gamma W) = \sqrt{wG^2 \cdot \mu G(\chi,\gamma G,\gamma Q,\gamma W)^2 + wQ^2 \cdot \mu Q(\chi,\gamma G,\gamma Q,\gamma W)^2 + wW^2 \cdot \mu W(\chi,\gamma G,\gamma Q,\gamma W)^2}$

The coefficient of variation of E0 (without model uncertainty@):

$$wE0(\chi,\gamma G,\gamma Q,\gamma W) := \frac{\sigma E0(\chi,\gamma G,\gamma Q,\gamma W)}{\mu E0(\chi,\gamma G,\gamma Q,\gamma W)} \quad \mu E(\chi,\gamma G,\gamma Q,\gamma W) := \mu \theta \cdot \mu E0(\chi,\gamma G,\gamma Q,\gamma W) \quad w E0(0.4, 1.35, 1.5, 1.5) = 0.123$$
The coefficient of variation of E:

$$wE(\chi,\gamma G,\gamma Q,\gamma W) := \sqrt{wE0(\chi,\gamma G,\gamma Q,\gamma W)^2 + w\theta^2 + wE0(\chi,\gamma G,\gamma Q,\gamma W)^2 \cdot w\theta^2}$$
The standard deviation of E:

$$\sigma E(\chi,\gamma G,\gamma Q,\gamma W) := \mu E(\chi,\gamma G,\gamma Q,\gamma W) \cdot w E(\chi,\gamma G,\gamma Q,\gamma W)$$
6 Three parameter lognormal distribution of E

$$wE(0.4, 1.35, 1.5, 1.5) = 0.133$$

Skewness of E0:

$$\alpha E0(\chi, \gamma G, \gamma Q, \gamma W) := \frac{\sigma Q(\chi, \gamma G, \gamma Q, \gamma W)^3 \cdot \alpha Q + \sigma W(\chi, \gamma G, \gamma Q, \gamma W)^3 \cdot \alpha W}{\sigma E0(\chi, \gamma G, \gamma Q, \gamma W)^3}$$
$$\alpha E0(\chi, \gamma G, \gamma Q, \gamma W)^3$$

Skewness of E:

$$\alpha E(\chi, \gamma G, \gamma Q, \gamma W) := \frac{w E(\chi, \gamma G, \gamma Q, \gamma W)^{3} \cdot \alpha E(\chi, \gamma G, \gamma Q, \gamma W) + 6 \cdot w \theta^{2} \cdot w E(\chi, \gamma G, \gamma Q, \gamma W)^{2} + w \theta^{3} \cdot \alpha \theta}{w E(\chi, \gamma G, \gamma Q, \gamma W)^{3}}$$

Parameter C:

$$C(\chi,\gamma G,\gamma Q,\gamma W) := \frac{\left(\sqrt{\alpha E(\chi,\gamma G,\gamma Q,\gamma W)^{2} + 4} + \alpha E(\chi,\gamma G,\gamma Q,\gamma W)\right)^{\frac{1}{3}} - \left(\sqrt{\alpha E(\chi,\gamma G,\gamma Q,\gamma W)^{2} + 4} - \alpha E(\chi,\gamma G,\gamma Q,\gamma W)\right)^{\frac{1}{3}}}{2^{\frac{1}{3}}}$$

Parameters of transformed variable:

$$m E(\chi, \gamma G, \gamma Q, \gamma W) \coloneqq -\ln(|C(\chi, \gamma G, \gamma Q, \gamma W)|) + \ln(\sigma E(\chi, \gamma G, \gamma Q, \gamma W)) - (0.5) \cdot \ln(1 + C(\chi, \gamma G, \gamma Q, \gamma W)^2)$$
$$s E(\chi, \gamma G, \gamma Q, \gamma W) \coloneqq \sqrt{\ln(1 + C(\chi, \gamma G, \gamma Q, \gamma W)^2)} x d(\chi, \gamma G, \gamma Q, \gamma W) \coloneqq \mu E(\chi, \gamma G, \gamma Q, \gamma W) - \frac{1}{C(\chi, \gamma G, \gamma Q, \gamma W)} \sigma E(\chi, \gamma G, \gamma Q, \gamma W)$$

Probability density of E, approximation by three parameter lognormal distribution: $x\alpha(0.4, 1.35, 1.5, 1.5) = 0.189$ Eln(x, χ , γ G, γ Q, γ W) := dlnorm(x - x0(χ , γ G, γ Q, γ W), mE(χ , γ G, γ Q, γ W), sE(χ , γ G, γ Q, γ W))

7 Theoretical value of the global factor γ for a given exceedance probability p of Ed:

$p = P\{ E > Ed \}$ $p := 0.001, 0.0011, 0.006$	Probability considered in EN:	$1 - \text{pnorm}(0.73.8, 0, 1) = 3.907 \times 10^{-3}$					
$pp(Ed, \chi, \gamma G, \gamma Q, \gamma W) := plnorm(Ed - x0(\chi, \gamma G, \gamma Q, \gamma W), mE(\chi, \gamma G, \gamma Q, \gamma W), sE(\chi, \gamma G, \gamma Q, \gamma W))$							
$Ed(p,\chi,\gamma G,\gamma Q,\gamma W) := x0(\chi,\gamma G,\gamma Q,\gamma W) + qlnorm(1-p,mE(\chi,\gamma G,\gamma Q,\gamma W),sE(\chi,\gamma G,\gamma Q,\gamma W))$							
$Ek(\chi,\gamma G,\gamma Q,\gamma W) := \mu G(\chi,\gamma G,\gamma Q,\gamma W) + Qk$	$(\chi,\gamma G,\gamma Q,\gamma W) + Wk(\chi,\gamma G,\gamma Q,\gamma W)$	pp(0.8, 0.4, 1.35, 1.5, 1.5) = 0.986					
$\gamma p(p, \chi, \gamma G, \gamma Q, \gamma W) := \frac{Ed(p, \chi, \gamma G, \gamma Q, \gamma W)}{Ek(\chi, \gamma G, \gamma Q, \gamma W)}$		Ed(0.002, 0.4, 1.35, 1.5, 1.5) = 0.884 $\gamma p(0.002, 0.3, 1.35, 1.5, 1.5) = 1.228$					
		γp(0.002, 0.3, 1.5, 1.5, 1.5) = 1.228					

8 The global load factor γ versus ratio χ : limit for dominant action: $k_0 := \frac{1 - \psi Q}{1 - \psi W}$ Check: $k_0 := 0.75$						
Auxiliary quantities:	a ::	$=$ if $(k \le k0, 1, \psi Q)$	$\mathbf{b} := \mathrm{if}(\mathbf{k} > \mathbf{k}0)$,1,ψW)	a = 1	b = 0.6
Limit value of χ for (6.10a) and	d (6.10b) χχ($\gamma G, \gamma Q, \gamma W) := \frac{1}{\gamma G}$	$\gamma G \cdot (1 - \xi)(1 + k) + \left[\gamma Q \cdot (\xi + \xi) + \left[\gamma Q - (\xi + \xi) + \left[\gamma $	$\frac{\xi}{(1+k)}$ a - ψQ +	- γW·k·(b –	ψW)]
Limit of $_\chi$ for (6.10a-mod) and	l (6.10b) χχa(γG, ⁄	$(Q, \gamma W) := \frac{1}{\gamma G(1 - \gamma G)}$	$\frac{\gamma G \cdot (1 - \xi)(1 + k)}{-\xi (1 + k) + (\gamma Q \cdot a + \gamma)}$	W·k·b)	χ la := $\chi\chi$ a(1.4, 1.6, 1.6)
Target probability $\beta t := 3.8$	Auxiliary: $\chi 0 :=$	1,1.11.3			$\chi l := \chi \chi (1)$.35, 1.5, 1.5)
$\chi a := 0, 0.05 \chi l + 0.05$ χb	$:= \chi la - 0.01, \chi la +$	0.04 0.999 χc	$:= 0, 0.05 \chi la + 0.04$	Check:	2	$\chi l = 0.31$
Turkstra's for 50 years: w(G = 0.1 mQ = 0.6	wQ = 0.35 mW	= 0.3 wW = 0.5 k	= 0	2	ζla = 0.116

Figure 1: Deterministic global load factory E versus χ , code values corresponding to equation (6.10), (6.10a) and (6.10b).

The global load factor γE corresponding to expression (6.10) - combination A is represented by solid red line, factor corresponding to expressions (6.10a) and (6.10b) combination B by blue line and factor corresponding to expression (6.10a,mod) combination C by dashed green line. Vertical dashed lines indicate boundaries for validity of expressions (6.10a) and (6.10b) or expressions (6.10a,mod) and (6.10b).

Figure 2: Global load factor γ versus χ , theoretical and deterministic values corresponding to equation (6.10), (6.10a) and (6.10b).

